Shuwei Zhang, Yan Qin Tan, Xi Zhang, Basappa Basappa, Tao Zhu, Vijay Pandey, Peter E Lobie
{"title":"TFF3 drives Hippo dependent EGFR-TKI resistance in lung adenocarcinoma.","authors":"Shuwei Zhang, Yan Qin Tan, Xi Zhang, Basappa Basappa, Tao Zhu, Vijay Pandey, Peter E Lobie","doi":"10.1038/s41388-024-03244-5","DOIUrl":null,"url":null,"abstract":"<p><p>Intrinsic and acquired resistance represent major obstacles to optimize outcomes in epidermal growth factor receptor (EGFR) tyrosine kinase inhibitor (TKI) targeted therapy in lung adenocarcinoma (LUAD). Hence, a deeper understanding of EGFR-TKI resistance mechanisms in LUAD will potentially assist in formulating strategies to delay or overcome such resistance. Herein, it was observed that trefoil factor 3 (TFF3) is a crucial mediator of the LUAD EGFR-TKI response. TFF3 conferred intrinsic resistance to EGFR inhibition in LUAD by promotion of EGFR activation. TFF3 expression was also increased in acquired EGFR-TKI resistant LUAD, accompanied by reduced EGFR activation. YAP, a key mediator of the Hippo signaling, was positively regulated by TFF3 by post-transcriptional mechanisms and was responsible for acquired EGFR-TKI resistance mediated by TFF3. Inhibition of TFF3 by a small molecule inhibitor not only enhanced EGFR-TKI sensitivity in LUAD cells but also restored the sensitivity of acquired EGFR-TKI resistant LUAD cells to EGFR-TKIs in vitro and in vivo. These findings demonstrate a pivotal function of TFF3 in mediating both intrinsic and acquired EGFR-TKI resistance in LUAD and may offer a potential therapeutic mechanism for delaying or overcoming resistance to EGFR-TKIs.</p>","PeriodicalId":19524,"journal":{"name":"Oncogene","volume":" ","pages":""},"PeriodicalIF":6.9000,"publicationDate":"2024-12-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Oncogene","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1038/s41388-024-03244-5","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Intrinsic and acquired resistance represent major obstacles to optimize outcomes in epidermal growth factor receptor (EGFR) tyrosine kinase inhibitor (TKI) targeted therapy in lung adenocarcinoma (LUAD). Hence, a deeper understanding of EGFR-TKI resistance mechanisms in LUAD will potentially assist in formulating strategies to delay or overcome such resistance. Herein, it was observed that trefoil factor 3 (TFF3) is a crucial mediator of the LUAD EGFR-TKI response. TFF3 conferred intrinsic resistance to EGFR inhibition in LUAD by promotion of EGFR activation. TFF3 expression was also increased in acquired EGFR-TKI resistant LUAD, accompanied by reduced EGFR activation. YAP, a key mediator of the Hippo signaling, was positively regulated by TFF3 by post-transcriptional mechanisms and was responsible for acquired EGFR-TKI resistance mediated by TFF3. Inhibition of TFF3 by a small molecule inhibitor not only enhanced EGFR-TKI sensitivity in LUAD cells but also restored the sensitivity of acquired EGFR-TKI resistant LUAD cells to EGFR-TKIs in vitro and in vivo. These findings demonstrate a pivotal function of TFF3 in mediating both intrinsic and acquired EGFR-TKI resistance in LUAD and may offer a potential therapeutic mechanism for delaying or overcoming resistance to EGFR-TKIs.
期刊介绍:
Oncogene is dedicated to advancing our understanding of cancer processes through the publication of exceptional research. The journal seeks to disseminate work that challenges conventional theories and contributes to establishing new paradigms in the etio-pathogenesis, diagnosis, treatment, or prevention of cancers. Emphasis is placed on research shedding light on processes driving metastatic spread and providing crucial insights into cancer biology beyond existing knowledge.
Areas covered include the cellular and molecular biology of cancer, resistance to cancer therapies, and the development of improved approaches to enhance survival. Oncogene spans the spectrum of cancer biology, from fundamental and theoretical work to translational, applied, and clinical research, including early and late Phase clinical trials, particularly those with biologic and translational endpoints.