Elias DeVoe, Honey V Reddi, Bradley W Taylor, Samantha Stachowiak, Jennifer L Geurts, Ben George, Reza Shaker, Raul Urrutia, Michael T Zimmermann
{"title":"An Analytical Approach that Combines Knowledge from Germline and Somatic Mutations Enhances Tumor Genomic Reanalyses in Precision Oncology.","authors":"Elias DeVoe, Honey V Reddi, Bradley W Taylor, Samantha Stachowiak, Jennifer L Geurts, Ben George, Reza Shaker, Raul Urrutia, Michael T Zimmermann","doi":"10.1089/cmb.2023.0461","DOIUrl":null,"url":null,"abstract":"<p><p><b><i>Background:</i></b> Expanded analysis of tumor genomics data enables current and future patients to gain more benefits, such as improving diagnosis, prognosis, and therapeutics. <b><i>Methods:</i></b> Here, we report tumor genomic data from 1146 cases accompanied by simultaneous expert analysis from patients visiting our oncological clinic. We developed an analytical approach that leverages combined germline and cancer genetics knowledge to evaluate opportunities, challenges, and yield of potentially medically relevant data. <b><i>Results:</i></b> We identified 499 cases (44%) with variants of interest, defined as either potentially actionable or pathogenic in a germline setting, and that were reported in the original analysis as variants of uncertain significance (VUS). Of the 7405 total unique tumor variants reported, 462 (6.2%) were reported as VUS at the time of diagnosis, yet information from germline analyses identified them as (likely) pathogenic. Notably, we find that a sizable number of these variants (36%-79%) had been reported in heritable disorders and deposited in public databases before the year of tumor testing. <b><i>Conclusions:</i></b> This finding indicates the need to develop data systems to bridge current gaps in variant annotation and interpretation and to develop more complete digital representations of actionable pathways. We outline our process for achieving such methodologic integration. Sharing genomics data across medical specialties can enable more robust, equitable, and thorough use of patient's genomics data. This comprehensive analytical approach and the new knowledge derived from its results highlight its multi-specialty value in precision oncology settings.</p>","PeriodicalId":15526,"journal":{"name":"Journal of Computational Biology","volume":" ","pages":"89-103"},"PeriodicalIF":1.4000,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Computational Biology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1089/cmb.2023.0461","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/12/11 0:00:00","PubModel":"Epub","JCR":"Q4","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
引用次数: 0
Abstract
Background: Expanded analysis of tumor genomics data enables current and future patients to gain more benefits, such as improving diagnosis, prognosis, and therapeutics. Methods: Here, we report tumor genomic data from 1146 cases accompanied by simultaneous expert analysis from patients visiting our oncological clinic. We developed an analytical approach that leverages combined germline and cancer genetics knowledge to evaluate opportunities, challenges, and yield of potentially medically relevant data. Results: We identified 499 cases (44%) with variants of interest, defined as either potentially actionable or pathogenic in a germline setting, and that were reported in the original analysis as variants of uncertain significance (VUS). Of the 7405 total unique tumor variants reported, 462 (6.2%) were reported as VUS at the time of diagnosis, yet information from germline analyses identified them as (likely) pathogenic. Notably, we find that a sizable number of these variants (36%-79%) had been reported in heritable disorders and deposited in public databases before the year of tumor testing. Conclusions: This finding indicates the need to develop data systems to bridge current gaps in variant annotation and interpretation and to develop more complete digital representations of actionable pathways. We outline our process for achieving such methodologic integration. Sharing genomics data across medical specialties can enable more robust, equitable, and thorough use of patient's genomics data. This comprehensive analytical approach and the new knowledge derived from its results highlight its multi-specialty value in precision oncology settings.
期刊介绍:
Journal of Computational Biology is the leading peer-reviewed journal in computational biology and bioinformatics, publishing in-depth statistical, mathematical, and computational analysis of methods, as well as their practical impact. Available only online, this is an essential journal for scientists and students who want to keep abreast of developments in bioinformatics.
Journal of Computational Biology coverage includes:
-Genomics
-Mathematical modeling and simulation
-Distributed and parallel biological computing
-Designing biological databases
-Pattern matching and pattern detection
-Linking disparate databases and data
-New tools for computational biology
-Relational and object-oriented database technology for bioinformatics
-Biological expert system design and use
-Reasoning by analogy, hypothesis formation, and testing by machine
-Management of biological databases