AnnoGCD: a generalized category discovery framework for automatic cell type annotation.

IF 4 Q1 GENETICS & HEREDITY
NAR Genomics and Bioinformatics Pub Date : 2024-12-04 eCollection Date: 2024-12-01 DOI:10.1093/nargab/lqae166
Francesco Ceccarelli, Pietro Liò, Sean B Holden
{"title":"AnnoGCD: a generalized category discovery framework for automatic cell type annotation.","authors":"Francesco Ceccarelli, Pietro Liò, Sean B Holden","doi":"10.1093/nargab/lqae166","DOIUrl":null,"url":null,"abstract":"<p><p>The identification of cell types in single-cell RNA sequencing (scRNA-seq) data is a critical task in understanding complex biological systems. Traditional supervised machine learning methods rely on large, well-labeled datasets, which are often impractical to obtain in open-world scenarios due to budget constraints and incomplete information. To address these challenges, we propose a novel computational framework, named AnnoGCD, building on Generalized Category Discovery (GCD) and Anomaly Detection (AD) for automatic cell type annotation. Our semi-supervised method combines labeled and unlabeled data to accurately classify known cell types and to discover novel ones, even in imbalanced datasets. AnnoGCD includes a semi-supervised block to first classify known cell types, followed by an unsupervised block aimed at identifying and clustering novel cell types. We evaluated our approach on five human scRNA-seq datasets and a mouse model atlas, demonstrating superior performance in both known and novel cell type identification compared to existing methods. Our model also exhibited robustness in datasets with significant class imbalance. The results suggest that AnnoGCD is a powerful tool for the automatic annotation of cell types in scRNA-seq data, providing a scalable solution for biological research and clinical applications. Our code and the datasets used for evaluations are publicly available on GitHub: https://github.com/cecca46/AnnoGCD/.</p>","PeriodicalId":33994,"journal":{"name":"NAR Genomics and Bioinformatics","volume":"6 4","pages":"lqae166"},"PeriodicalIF":4.0000,"publicationDate":"2024-12-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11629990/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"NAR Genomics and Bioinformatics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1093/nargab/lqae166","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/12/1 0:00:00","PubModel":"eCollection","JCR":"Q1","JCRName":"GENETICS & HEREDITY","Score":null,"Total":0}
引用次数: 0

Abstract

The identification of cell types in single-cell RNA sequencing (scRNA-seq) data is a critical task in understanding complex biological systems. Traditional supervised machine learning methods rely on large, well-labeled datasets, which are often impractical to obtain in open-world scenarios due to budget constraints and incomplete information. To address these challenges, we propose a novel computational framework, named AnnoGCD, building on Generalized Category Discovery (GCD) and Anomaly Detection (AD) for automatic cell type annotation. Our semi-supervised method combines labeled and unlabeled data to accurately classify known cell types and to discover novel ones, even in imbalanced datasets. AnnoGCD includes a semi-supervised block to first classify known cell types, followed by an unsupervised block aimed at identifying and clustering novel cell types. We evaluated our approach on five human scRNA-seq datasets and a mouse model atlas, demonstrating superior performance in both known and novel cell type identification compared to existing methods. Our model also exhibited robustness in datasets with significant class imbalance. The results suggest that AnnoGCD is a powerful tool for the automatic annotation of cell types in scRNA-seq data, providing a scalable solution for biological research and clinical applications. Our code and the datasets used for evaluations are publicly available on GitHub: https://github.com/cecca46/AnnoGCD/.

求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
8.00
自引率
2.20%
发文量
95
审稿时长
15 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信