Polyvinylidene fluoride transducer shape optimization for the characterization of anisotropic materials.

IF 2.1 2区 物理与天体物理 Q2 ACOUSTICS
Diego A Cowes, Juan I Mieza, Martín P Gómez
{"title":"Polyvinylidene fluoride transducer shape optimization for the characterization of anisotropic materials.","authors":"Diego A Cowes, Juan I Mieza, Martín P Gómez","doi":"10.1121/10.0034601","DOIUrl":null,"url":null,"abstract":"<p><p>In the context of ultrasonic determination of mechanical properties, it is common to use oblique incident waves to characterize fluid-immersed anisotropic samples. The lateral displacement of the ultrasonic field owing to leaky guided wave phenomena poses a challenge for data inversion because beam spreading is rarely well represented by plane wave models. In this study, a finite beam model based on the angular spectrum method was developed to estimate the influence of the transducer shape and position on the transmitted signals. Additionally, anisotropic solids were considered so that the beam skewing effect was contemplated. A small-emitter large-receiver configuration was chosen, and the ideal shape and position of the receiving transducer were obtained through a meta-heuristic optimization approach with the goal of achieving a measurement system that sufficiently resembles plane wave propagation. A polyvinylidene fluoride receiver was fabricated based on the findings and tested in three cases: a single-crystal silicon wafer, a lightly anisotropic stainless-steel plate, and a highly anisotropic composite plate. Good agreement was found between the measurements and the plane wave model.</p>","PeriodicalId":17168,"journal":{"name":"Journal of the Acoustical Society of America","volume":"156 6","pages":"3943-3953"},"PeriodicalIF":2.1000,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of the Acoustical Society of America","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1121/10.0034601","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ACOUSTICS","Score":null,"Total":0}
引用次数: 0

Abstract

In the context of ultrasonic determination of mechanical properties, it is common to use oblique incident waves to characterize fluid-immersed anisotropic samples. The lateral displacement of the ultrasonic field owing to leaky guided wave phenomena poses a challenge for data inversion because beam spreading is rarely well represented by plane wave models. In this study, a finite beam model based on the angular spectrum method was developed to estimate the influence of the transducer shape and position on the transmitted signals. Additionally, anisotropic solids were considered so that the beam skewing effect was contemplated. A small-emitter large-receiver configuration was chosen, and the ideal shape and position of the receiving transducer were obtained through a meta-heuristic optimization approach with the goal of achieving a measurement system that sufficiently resembles plane wave propagation. A polyvinylidene fluoride receiver was fabricated based on the findings and tested in three cases: a single-crystal silicon wafer, a lightly anisotropic stainless-steel plate, and a highly anisotropic composite plate. Good agreement was found between the measurements and the plane wave model.

聚偏氟乙烯换能器形状优化的各向异性材料表征。
在超声力学性能测定的背景下,通常使用斜入射波来表征流体浸没的各向异性样品。由于泄漏导波现象引起的超声场横向位移对数据反演提出了挑战,因为波束传播很少能很好地用平面波模型来表示。本文建立了基于角谱法的有限波束模型来估计换能器形状和位置对传输信号的影响。此外,考虑了各向异性固体,因此考虑了光束偏斜效应。选择了小发射-大接收结构,并通过启发式优化方法获得了理想的接收换能器形状和位置,目标是使测量系统足够接近平面波传播。在此基础上制备了聚偏氟乙烯接收器,并在单晶硅片、轻度各向异性不锈钢板和高度各向异性复合板三种情况下进行了测试。测量结果与平面波模型吻合较好。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
4.60
自引率
16.70%
发文量
1433
审稿时长
4.7 months
期刊介绍: Since 1929 The Journal of the Acoustical Society of America has been the leading source of theoretical and experimental research results in the broad interdisciplinary study of sound. Subject coverage includes: linear and nonlinear acoustics; aeroacoustics, underwater sound and acoustical oceanography; ultrasonics and quantum acoustics; architectural and structural acoustics and vibration; speech, music and noise; psychology and physiology of hearing; engineering acoustics, transduction; bioacoustics, animal bioacoustics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信