A degradable polyimide aerogel with highly efficient solar-thermal-electric effect for oil absorption, deicing, and power generation.

IF 9.4 1区 化学 Q1 CHEMISTRY, PHYSICAL
Journal of Colloid and Interface Science Pub Date : 2025-03-15 Epub Date: 2024-12-07 DOI:10.1016/j.jcis.2024.12.024
Shiwei Chen, Dongfang Gao, Lixia Long, Wenxuan Cui, Chaofeng Zhu, Xue Wang, Bing Li, Yu Chen, Yuanyue Li, Chuanxing Jiang
{"title":"A degradable polyimide aerogel with highly efficient solar-thermal-electric effect for oil absorption, deicing, and power generation.","authors":"Shiwei Chen, Dongfang Gao, Lixia Long, Wenxuan Cui, Chaofeng Zhu, Xue Wang, Bing Li, Yu Chen, Yuanyue Li, Chuanxing Jiang","doi":"10.1016/j.jcis.2024.12.024","DOIUrl":null,"url":null,"abstract":"<p><p>Photothermal materials are considered as promising materials because they can convert clean solar energy into thermal and electrical energy. However, developing degradable photothermal materials with highly efficient solar-thermal-electric energy conversion performance remains a huge challenge. Here, a superhydrophobic bio-polyimide/carbon quantum dots aerogel (S-BioPI/CQDs) is synthesized. S-BioPI/CQDs exhibits superhydrophobicity (WCA = 155°) and super lipophilicity (OCA = 0°). Remarkably, S-BioPI/CQDs shows good solar-thermal-electric energy conversion properties. The surface temperature of S-BioPI/CQDs can be up to 80 °C within 68 s under the solar light irradiation of 1 kW m<sup>-2</sup>. S-BioPI/CQDs has large crude oil adsorption capacity (up to 68.8 times as much as its own weight) and deicing under sunlight irradiation. Meanwhile, the output voltage can be up to 706 mV under the solar light irradiation of 5 kW m<sup>-2</sup>. S-BioPI/CQDs can resist the impact of harsh environments, such as high temperatures, dynamic ocean environments, and strong acid environment. More importantly, S-BioPI/CQDs can be degraded completely within only 8 min. This is the first time to achieve the degradation of PI aerogel. This study provides a new and effective method to prepare advanced photothermal materials with degradable performances for the efficient use of solar energy to solve the fossil fuel crisis and protect the environment.</p>","PeriodicalId":351,"journal":{"name":"Journal of Colloid and Interface Science","volume":"682 ","pages":"1006-1016"},"PeriodicalIF":9.4000,"publicationDate":"2025-03-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Colloid and Interface Science","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1016/j.jcis.2024.12.024","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/12/7 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Photothermal materials are considered as promising materials because they can convert clean solar energy into thermal and electrical energy. However, developing degradable photothermal materials with highly efficient solar-thermal-electric energy conversion performance remains a huge challenge. Here, a superhydrophobic bio-polyimide/carbon quantum dots aerogel (S-BioPI/CQDs) is synthesized. S-BioPI/CQDs exhibits superhydrophobicity (WCA = 155°) and super lipophilicity (OCA = 0°). Remarkably, S-BioPI/CQDs shows good solar-thermal-electric energy conversion properties. The surface temperature of S-BioPI/CQDs can be up to 80 °C within 68 s under the solar light irradiation of 1 kW m-2. S-BioPI/CQDs has large crude oil adsorption capacity (up to 68.8 times as much as its own weight) and deicing under sunlight irradiation. Meanwhile, the output voltage can be up to 706 mV under the solar light irradiation of 5 kW m-2. S-BioPI/CQDs can resist the impact of harsh environments, such as high temperatures, dynamic ocean environments, and strong acid environment. More importantly, S-BioPI/CQDs can be degraded completely within only 8 min. This is the first time to achieve the degradation of PI aerogel. This study provides a new and effective method to prepare advanced photothermal materials with degradable performances for the efficient use of solar energy to solve the fossil fuel crisis and protect the environment.

一种可降解的聚酰亚胺气凝胶,具有高效的太阳能热电效应,用于吸油、除冰和发电。
光热材料可以将清洁的太阳能转化为热能和电能,被认为是一种很有前途的材料。然而,开发具有高效光热转换性能的可降解光热材料仍然是一个巨大的挑战。本文合成了一种超疏水生物聚酰亚胺/碳量子点气凝胶(S-BioPI/CQDs)。S-BioPI/CQDs具有超疏水性(WCA = 155°)和超亲脂性(OCA = 0°)。值得注意的是,S-BioPI/CQDs具有良好的太阳能-热电转换性能。在1 kW m-2的太阳光照射下,s - biopi /CQDs的表面温度在68 s内可达到80℃。S-BioPI/CQDs具有较大的原油吸附能力(可达其自重的68.8倍)和在阳光照射下除冰能力。同时,在5 kW m-2的太阳光照射下,输出电压可达706 mV。S-BioPI/ cqd可以抵抗恶劣环境的影响,如高温、动态海洋环境和强酸环境。更重要的是,S-BioPI/CQDs可以在8 min内完全降解,这是首次实现对PI气凝胶的降解。本研究为高效利用太阳能、解决化石燃料危机、保护环境提供了一种制备具有可降解性能的先进光热材料的新方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
16.10
自引率
7.10%
发文量
2568
审稿时长
2 months
期刊介绍: The Journal of Colloid and Interface Science publishes original research findings on the fundamental principles of colloid and interface science, as well as innovative applications in various fields. The criteria for publication include impact, quality, novelty, and originality. Emphasis: The journal emphasizes fundamental scientific innovation within the following categories: A.Colloidal Materials and Nanomaterials B.Soft Colloidal and Self-Assembly Systems C.Adsorption, Catalysis, and Electrochemistry D.Interfacial Processes, Capillarity, and Wetting E.Biomaterials and Nanomedicine F.Energy Conversion and Storage, and Environmental Technologies
文献相关原料
公司名称
产品信息
阿拉丁
ethanol
阿拉丁
N-methyl pyrrolidone (NMP)
阿拉丁
pyridine
阿拉丁
N, N-dimethylformamide (DMF)
阿拉丁
citric acid
阿拉丁
Acetic anhydride
阿拉丁
ethanol
阿拉丁
N-methyl pyrrolidone (NMP)
阿拉丁
pyridine
阿拉丁
N, N-dimethylformamide (DMF)
阿拉丁
citric acid
阿拉丁
Acetic anhydride
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信