Machine learning-based dynamic predictive models for prognosis and treatment decisions in patients with liver metastases from gastric cancer.

IF 3.6 3区 医学 Q2 ONCOLOGY
American journal of cancer research Pub Date : 2024-11-25 eCollection Date: 2024-01-01 DOI:10.62347/MTBM7462
Zhiqiang Wang, Xingqing Jia, Yukun Yang, Ning Meng, Le Wang, Jie Zheng, Yuanqing Xu
{"title":"Machine learning-based dynamic predictive models for prognosis and treatment decisions in patients with liver metastases from gastric cancer.","authors":"Zhiqiang Wang, Xingqing Jia, Yukun Yang, Ning Meng, Le Wang, Jie Zheng, Yuanqing Xu","doi":"10.62347/MTBM7462","DOIUrl":null,"url":null,"abstract":"<p><p>Gastric cancer with liver metastasis (GCLM) often has a poor prognosis. Therefore, it is crucial to identify risk factors affecting their overall survival (OS) and cancer-specific survival (CSS). This study aimed to construct practical machine learning models to predict survival time and help clinicians choose appropriate treatments. We reviewed the clinical and survival data of GCLM patients from 2010 to 2017 in the Surveillance, Epidemiology, and End Results (SEER) databases and divided the patients into training and testing groups. The risk factors affecting OS and CSS were determined by least absolute shrinkage and selector operator (LASSO), univariate cox regression, best subset regression (BSR) and the stepwise backward regression. Then, five machine learning models, including random survival forest (RSF), Gradient Boosting Machine (GBM), the Cox proportional hazard (CPH), Survival Support Vector Machine (survivalSVM), and eXtreme Gradient Boosting (XGBoost), were built using the identified risk factors. The model with the best predictive ability was determined using concordance index (c-index), area under the curve (AUC), brier score, and decision curve analysis (DCA), and externally verified with data from 233 cases diagnosed with liver metastasis of cancer from The Shijiazhuang People's Hospital, Jinan City People's Hospital, and The Sixth People's Hospital of Huizhou from 2017 to 2018. The study involved a total of 1300 GCLM patients. The prognostic risk factors affecting OS and CSS were the same, including grade, histology, T stage, N stage, surgery, and chemotherapy. The XGBoost model was found to have the best predictive ability for OS, with AUC of 0.891 [95% CI 0.841-0.941], brier score of 0.061 [95% CI 0.046-0.076], and c-index of 0.752 [95% CI 0.742-0.761], as well as for CSS, with AUC of 0.895 [95% CI 0.848-0.942], brier score of 0.064 [95% CI 0.050-0.079], and c-index of 0.746 [95% CI 0.736-0.756]. The AUC score, brier score and c-index all illustrated the accuracy of the model, and the validation using the external datasets further confirmed the reliability of the model. Therefore, the XGBoost model demonstrated significant potential in predicting survival times and selecting appropriate treatment plans.</p>","PeriodicalId":7437,"journal":{"name":"American journal of cancer research","volume":"14 11","pages":"5521-5538"},"PeriodicalIF":3.6000,"publicationDate":"2024-11-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11626261/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"American journal of cancer research","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.62347/MTBM7462","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/1/1 0:00:00","PubModel":"eCollection","JCR":"Q2","JCRName":"ONCOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Gastric cancer with liver metastasis (GCLM) often has a poor prognosis. Therefore, it is crucial to identify risk factors affecting their overall survival (OS) and cancer-specific survival (CSS). This study aimed to construct practical machine learning models to predict survival time and help clinicians choose appropriate treatments. We reviewed the clinical and survival data of GCLM patients from 2010 to 2017 in the Surveillance, Epidemiology, and End Results (SEER) databases and divided the patients into training and testing groups. The risk factors affecting OS and CSS were determined by least absolute shrinkage and selector operator (LASSO), univariate cox regression, best subset regression (BSR) and the stepwise backward regression. Then, five machine learning models, including random survival forest (RSF), Gradient Boosting Machine (GBM), the Cox proportional hazard (CPH), Survival Support Vector Machine (survivalSVM), and eXtreme Gradient Boosting (XGBoost), were built using the identified risk factors. The model with the best predictive ability was determined using concordance index (c-index), area under the curve (AUC), brier score, and decision curve analysis (DCA), and externally verified with data from 233 cases diagnosed with liver metastasis of cancer from The Shijiazhuang People's Hospital, Jinan City People's Hospital, and The Sixth People's Hospital of Huizhou from 2017 to 2018. The study involved a total of 1300 GCLM patients. The prognostic risk factors affecting OS and CSS were the same, including grade, histology, T stage, N stage, surgery, and chemotherapy. The XGBoost model was found to have the best predictive ability for OS, with AUC of 0.891 [95% CI 0.841-0.941], brier score of 0.061 [95% CI 0.046-0.076], and c-index of 0.752 [95% CI 0.742-0.761], as well as for CSS, with AUC of 0.895 [95% CI 0.848-0.942], brier score of 0.064 [95% CI 0.050-0.079], and c-index of 0.746 [95% CI 0.736-0.756]. The AUC score, brier score and c-index all illustrated the accuracy of the model, and the validation using the external datasets further confirmed the reliability of the model. Therefore, the XGBoost model demonstrated significant potential in predicting survival times and selecting appropriate treatment plans.

求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
3.80%
发文量
263
期刊介绍: The American Journal of Cancer Research (AJCR) (ISSN 2156-6976), is an independent open access, online only journal to facilitate rapid dissemination of novel discoveries in basic science and treatment of cancer. It was founded by a group of scientists for cancer research and clinical academic oncologists from around the world, who are devoted to the promotion and advancement of our understanding of the cancer and its treatment. The scope of AJCR is intended to encompass that of multi-disciplinary researchers from any scientific discipline where the primary focus of the research is to increase and integrate knowledge about etiology and molecular mechanisms of carcinogenesis with the ultimate aim of advancing the cure and prevention of this increasingly devastating disease. To achieve these aims AJCR will publish review articles, original articles and new techniques in cancer research and therapy. It will also publish hypothesis, case reports and letter to the editor. Unlike most other open access online journals, AJCR will keep most of the traditional features of paper print that we are all familiar with, such as continuous volume, issue numbers, as well as continuous page numbers to retain our comfortable familiarity towards an academic journal.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信