Green interface optimization strategy based on allium mongolicum regel extract for enhanced alkaline Al-air battery performance.

IF 9.4 1区 化学 Q1 CHEMISTRY, PHYSICAL
Junpeng Zhu, Yutian Li, Wenxu Liu, Yunfei Gao, Yue Yin, Jinfang Wu, Yujie Qiang, Wenbo Wang
{"title":"Green interface optimization strategy based on allium mongolicum regel extract for enhanced alkaline Al-air battery performance.","authors":"Junpeng Zhu, Yutian Li, Wenxu Liu, Yunfei Gao, Yue Yin, Jinfang Wu, Yujie Qiang, Wenbo Wang","doi":"10.1016/j.jcis.2024.12.025","DOIUrl":null,"url":null,"abstract":"<p><p>Aqueous aluminum (Al)-air batteries (AABs) are gaining significant attention due to their excellent theoretical performance. However, the self-corrosion of the aluminum anode reduces anodic efficiency and battery capacity, limiting the broad commercial application of AABs. Herein, we propose the utilizing Allium Mongolicum Regel (AMR) extract as a green electrolyte additive to optimize the Al anode/electrolyte interface in alkaline AABs. Our findings indicate that the incorporation of AMR into NaOH electrolyte offers an effective strategy for preventing the self-corrosion of the Al anode, leading to significant enhancements in battery performance. Electrochemical experiments demonstrate that AMR achieves an inhibition efficiency of 53.9%. Through in-situ optical microscopy and in-situ attenuated total reflection Fourier-transform infrared spectroscopy, it is observed that the introduction of AMR can retard pitting corrosion by adsorbing onto the Al surface. This leads to a significant increase in specific capacity, from 1096 to 1667 mAh g<sup>-1</sup>, compared with the electrolyte without AMR for AABs. Further analysis utilizing X-ray photoelectron spectroscopy, quantum chemical calculations, and ab-initio molecular dynamics determine that 4-hydroxycinnamamide (4-HCAA) and flavone molecules, which are the most active components of AMR, can bind with Al atoms through the carbonyl O functional group, forming an O-Al-O bond, thus suppressing the self-corrosion of the Al anode. The incorporation of the AMR extract into the electrolyte of AABs represents a sustainable approach for optimizing battery performance. This innovative strategy addresses a critical issue in the development of AABs, potentially creating new opportunities for their commercialization and widespread utilization as a reliable energy storage technology.</p>","PeriodicalId":351,"journal":{"name":"Journal of Colloid and Interface Science","volume":"682 ","pages":"983-994"},"PeriodicalIF":9.4000,"publicationDate":"2024-12-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Colloid and Interface Science","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1016/j.jcis.2024.12.025","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Aqueous aluminum (Al)-air batteries (AABs) are gaining significant attention due to their excellent theoretical performance. However, the self-corrosion of the aluminum anode reduces anodic efficiency and battery capacity, limiting the broad commercial application of AABs. Herein, we propose the utilizing Allium Mongolicum Regel (AMR) extract as a green electrolyte additive to optimize the Al anode/electrolyte interface in alkaline AABs. Our findings indicate that the incorporation of AMR into NaOH electrolyte offers an effective strategy for preventing the self-corrosion of the Al anode, leading to significant enhancements in battery performance. Electrochemical experiments demonstrate that AMR achieves an inhibition efficiency of 53.9%. Through in-situ optical microscopy and in-situ attenuated total reflection Fourier-transform infrared spectroscopy, it is observed that the introduction of AMR can retard pitting corrosion by adsorbing onto the Al surface. This leads to a significant increase in specific capacity, from 1096 to 1667 mAh g-1, compared with the electrolyte without AMR for AABs. Further analysis utilizing X-ray photoelectron spectroscopy, quantum chemical calculations, and ab-initio molecular dynamics determine that 4-hydroxycinnamamide (4-HCAA) and flavone molecules, which are the most active components of AMR, can bind with Al atoms through the carbonyl O functional group, forming an O-Al-O bond, thus suppressing the self-corrosion of the Al anode. The incorporation of the AMR extract into the electrolyte of AABs represents a sustainable approach for optimizing battery performance. This innovative strategy addresses a critical issue in the development of AABs, potentially creating new opportunities for their commercialization and widespread utilization as a reliable energy storage technology.

求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
16.10
自引率
7.10%
发文量
2568
审稿时长
2 months
期刊介绍: The Journal of Colloid and Interface Science publishes original research findings on the fundamental principles of colloid and interface science, as well as innovative applications in various fields. The criteria for publication include impact, quality, novelty, and originality. Emphasis: The journal emphasizes fundamental scientific innovation within the following categories: A.Colloidal Materials and Nanomaterials B.Soft Colloidal and Self-Assembly Systems C.Adsorption, Catalysis, and Electrochemistry D.Interfacial Processes, Capillarity, and Wetting E.Biomaterials and Nanomedicine F.Energy Conversion and Storage, and Environmental Technologies
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信