A PEGylated deep eutectic solvent for "bubbling" synthesis of SnO2/SnS heterostructure for the stable lithium-ion storage.

IF 9.4 1区 化学 Q1 CHEMISTRY, PHYSICAL
Journal of Colloid and Interface Science Pub Date : 2025-03-15 Epub Date: 2024-12-06 DOI:10.1016/j.jcis.2024.12.014
Zhiqiang Liu, Hui Li, Huan Yao, Yi Zhuang, Runbo Gao, Zhiteng Wang, Zhenhe Zhu, Huixin Lan, Zeheng Li, Wenlong Cai
{"title":"A PEGylated deep eutectic solvent for \"bubbling\" synthesis of SnO<sub>2</sub>/SnS heterostructure for the stable lithium-ion storage.","authors":"Zhiqiang Liu, Hui Li, Huan Yao, Yi Zhuang, Runbo Gao, Zhiteng Wang, Zhenhe Zhu, Huixin Lan, Zeheng Li, Wenlong Cai","doi":"10.1016/j.jcis.2024.12.014","DOIUrl":null,"url":null,"abstract":"<p><p>Constructing heterostructures is an effective strategy for the synthesis of high-performance anode electrode materials for lithium-ion batteries (LIBs). In this study, a \"bubbling\" PEGylated deep eutectic solvent (DES) method is utilized to synthesize SnO<sub>2</sub>/SnS heterostructure nanodots anchored on carbon nanosheets (SnO<sub>2</sub>/SnS@CN). A comprehensive investigation of the physical and chemical processes during the \"bubbling\" reaction offers in-depth insights into the underlying mechanism of the PEGylated DES approach. The carbon nanosheet structure enhances the electrical conductivity between SnO<sub>2</sub> particle units and, due to its excellent mechanical properties, significantly contributes to material stability. The nanodot configuration of the heterostructure further improves electron transfer and lithium-ion (Li<sup>+</sup>) migration within the SnO<sub>2</sub> units. The SnO<sub>2</sub>/SnS@CN material exhibits outstanding Li<sup>+</sup> storage performance, achieving a high capacity of 675.6 mA h/g at 1 A/g after 1000 cycles. These findings establish a theoretical foundation for preparing heterostructure anode materials using the \"bubbling\" PEGylated DES method.</p>","PeriodicalId":351,"journal":{"name":"Journal of Colloid and Interface Science","volume":"682 ","pages":"995-1005"},"PeriodicalIF":9.4000,"publicationDate":"2025-03-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Colloid and Interface Science","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1016/j.jcis.2024.12.014","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/12/6 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Constructing heterostructures is an effective strategy for the synthesis of high-performance anode electrode materials for lithium-ion batteries (LIBs). In this study, a "bubbling" PEGylated deep eutectic solvent (DES) method is utilized to synthesize SnO2/SnS heterostructure nanodots anchored on carbon nanosheets (SnO2/SnS@CN). A comprehensive investigation of the physical and chemical processes during the "bubbling" reaction offers in-depth insights into the underlying mechanism of the PEGylated DES approach. The carbon nanosheet structure enhances the electrical conductivity between SnO2 particle units and, due to its excellent mechanical properties, significantly contributes to material stability. The nanodot configuration of the heterostructure further improves electron transfer and lithium-ion (Li+) migration within the SnO2 units. The SnO2/SnS@CN material exhibits outstanding Li+ storage performance, achieving a high capacity of 675.6 mA h/g at 1 A/g after 1000 cycles. These findings establish a theoretical foundation for preparing heterostructure anode materials using the "bubbling" PEGylated DES method.

一种用于“鼓泡”合成SnO2/SnS异质结构的聚乙二醇化深共晶溶剂。
构建异质结构是合成高性能锂离子电池负极材料的有效策略。本研究采用“鼓泡”聚乙二醇化深共晶溶剂(DES)方法,在碳纳米片上合成了SnO2/SnS异质结构纳米点(SnO2/SnS@CN)。对“冒泡”反应过程中物理和化学过程的全面研究,为聚乙二醇化DES方法的潜在机制提供了深入的见解。碳纳米片结构增强了SnO2颗粒单元之间的导电性,并且由于其优异的机械性能,显著有助于材料的稳定性。异质结构的纳米点构型进一步改善了SnO2单元内的电子转移和锂离子(Li+)迁移。SnO2/SnS@CN材料表现出优异的Li+存储性能,在1 a /g条件下,经过1000次循环后可达到675.6 mA h/g的高容量。这些发现为“鼓泡”聚乙二醇化DES法制备异质结构阳极材料奠定了理论基础。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
16.10
自引率
7.10%
发文量
2568
审稿时长
2 months
期刊介绍: The Journal of Colloid and Interface Science publishes original research findings on the fundamental principles of colloid and interface science, as well as innovative applications in various fields. The criteria for publication include impact, quality, novelty, and originality. Emphasis: The journal emphasizes fundamental scientific innovation within the following categories: A.Colloidal Materials and Nanomaterials B.Soft Colloidal and Self-Assembly Systems C.Adsorption, Catalysis, and Electrochemistry D.Interfacial Processes, Capillarity, and Wetting E.Biomaterials and Nanomedicine F.Energy Conversion and Storage, and Environmental Technologies
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信