Development and validation of a deep learning model for morphological assessment of myeloproliferative neoplasms using clinical data and digital pathology.

IF 5.1 2区 医学 Q1 HEMATOLOGY
Rong Wang, Zhongxun Shi, Yuan Zhang, Liangmin Wei, Minghui Duan, Min Xiao, Jin Wang, Suning Chen, Qian Wang, Jianyao Huang, Xiaomei Hu, Jinhong Mei, Jieyu He, Feng Chen, Lei Fan, Guanyu Yang, Wenyi Shen, Yongyue Wei, Jianyong Li
{"title":"Development and validation of a deep learning model for morphological assessment of myeloproliferative neoplasms using clinical data and digital pathology.","authors":"Rong Wang, Zhongxun Shi, Yuan Zhang, Liangmin Wei, Minghui Duan, Min Xiao, Jin Wang, Suning Chen, Qian Wang, Jianyao Huang, Xiaomei Hu, Jinhong Mei, Jieyu He, Feng Chen, Lei Fan, Guanyu Yang, Wenyi Shen, Yongyue Wei, Jianyong Li","doi":"10.1111/bjh.19938","DOIUrl":null,"url":null,"abstract":"<p><p>The subjectivity of morphological assessment and the overlapping pathological features of different subtypes of myeloproliferative neoplasms (MPNs) make accurate diagnosis challenging. To improve the pathological assessment of MPNs, we developed a diagnosis model (fusion model) based on the combination of bone marrow whole-slide images (deep learning [DL] model) and clinical parameters (clinical model). Thousand and fifty-one MPN and non-MPN patients were divided into the training, internal testing and one internal and two external validation cohorts (the combined validation cohort). In the combined validation cohort, fusion model achieved higher areas under curve (AUCs) than clinical or DL model or both for MPNs and subtype identification. Compared with haematopathologists with different experience, clinical model achieved AUC which was comparable to seniors and higher than juniors (p = 0.0208) for polycythaemia vera. The AUCs of fusion model were comparable to seniors and higher than juniors for essential thrombocytosis (p = 0.0141), prefibrotic primary myelofibrosis (p = 0.0085) and overt primary myelofibrosis (p = 0.0330) identification. In conclusion, the performances of our proposed models are equivalent to senior haematopathologists and better than juniors, providing a new perspective on the utilization of DL algorithms in MPN morphological assessment.</p>","PeriodicalId":135,"journal":{"name":"British Journal of Haematology","volume":" ","pages":""},"PeriodicalIF":5.1000,"publicationDate":"2024-12-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"British Journal of Haematology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1111/bjh.19938","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"HEMATOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

The subjectivity of morphological assessment and the overlapping pathological features of different subtypes of myeloproliferative neoplasms (MPNs) make accurate diagnosis challenging. To improve the pathological assessment of MPNs, we developed a diagnosis model (fusion model) based on the combination of bone marrow whole-slide images (deep learning [DL] model) and clinical parameters (clinical model). Thousand and fifty-one MPN and non-MPN patients were divided into the training, internal testing and one internal and two external validation cohorts (the combined validation cohort). In the combined validation cohort, fusion model achieved higher areas under curve (AUCs) than clinical or DL model or both for MPNs and subtype identification. Compared with haematopathologists with different experience, clinical model achieved AUC which was comparable to seniors and higher than juniors (p = 0.0208) for polycythaemia vera. The AUCs of fusion model were comparable to seniors and higher than juniors for essential thrombocytosis (p = 0.0141), prefibrotic primary myelofibrosis (p = 0.0085) and overt primary myelofibrosis (p = 0.0330) identification. In conclusion, the performances of our proposed models are equivalent to senior haematopathologists and better than juniors, providing a new perspective on the utilization of DL algorithms in MPN morphological assessment.

利用临床数据和数字病理学对骨髓增生性肿瘤进行形态学评估的深度学习模型的开发和验证。
形态学评估的主观性和不同亚型骨髓增生性肿瘤(mpn)的重叠病理特征使得准确诊断具有挑战性。为了提高mpn的病理评估,我们建立了基于骨髓全切片图像(深度学习[DL]模型)和临床参数(临床模型)相结合的诊断模型(融合模型)。将1551例MPN和非MPN患者分为训练、内部测试和1个内部和2个外部验证队列(联合验证队列)。在联合验证队列中,融合模型在mpn和亚型识别方面比临床或DL模型获得更高的曲线下面积(auc)。与不同经验的血液病医师比较,临床模型对真性红细胞增多症的AUC与老年人相当,高于青少年(p = 0.0208)。融合模型的auc与老年人相当,在必要的血小板增多(p = 0.0141)、纤维化前原发性骨髓纤维化(p = 0.0085)和显性原发性骨髓纤维化(p = 0.0330)鉴定方面高于青少年。总之,我们提出的模型的性能与高级血液病理学家相当,优于初级血液病理学家,为深度学习算法在MPN形态学评估中的应用提供了新的视角。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
8.60
自引率
4.60%
发文量
565
审稿时长
1 months
期刊介绍: The British Journal of Haematology publishes original research papers in clinical, laboratory and experimental haematology. The Journal also features annotations, reviews, short reports, images in haematology and Letters to the Editor.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信