Biosynthesis of Antimicrobial Ornithine-Containing Lacticin 481 Analogues by Use of a Combinatorial Biosynthetic Pathway in Escherichia coli.

IF 3.7 2区 生物学 Q1 BIOCHEMICAL RESEARCH METHODS
ACS Synthetic Biology Pub Date : 2024-12-20 Epub Date: 2024-12-11 DOI:10.1021/acssynbio.4c00650
Yanli Xu, Roos Reuvekamp, Oscar P Kuipers
{"title":"Biosynthesis of Antimicrobial Ornithine-Containing Lacticin 481 Analogues by Use of a Combinatorial Biosynthetic Pathway in <i>Escherichia coli</i>.","authors":"Yanli Xu, Roos Reuvekamp, Oscar P Kuipers","doi":"10.1021/acssynbio.4c00650","DOIUrl":null,"url":null,"abstract":"<p><p>Lacticin 481, a ribosomally synthesized and post-translationally modified peptide (RiPP), exhibits antimicrobial activity, for which its characteristic lanthionine and methyllanthionine ring structures are essential. The post-translational introduction of (methyl)lanthionines in lacticin 481 is catalyzed by the enzyme LctM. In addition to macrocycle formation, various other post-translational modifications can enhance and modulate the chemical and functional diversity of antimicrobial peptides. The incorporation of noncanonical amino acids, occurring in many nonribosomal peptides (NRPs), is a valuable strategy to improve the properties of antimicrobial peptides. Ornithine, a noncanonical amino acid, can be integrated into RiPPs through the conversion of arginine residues by the newly characterized peptide arginase OspR. Recently, a flexible expression system was described for engineering lanthipeptides using the post-translational modification enzyme SyncM, which has a relaxed substrate specificity. This study demonstrates that SyncM is able to catalyze the production of active lacticin 481 by recognition of a designed hybrid leader peptide, which enables the incorporation of both ornithine and (methyl)lanthionine. Utilizing this hybrid leader peptide, the functional order was established for the production of active ornithine-containing lacticin 481 analogues at positions 8 and 12 <i>in vivo</i>. Furthermore, this study demonstrates that prior lanthionine (Lan) and methyllanthionine (MeLan) formation may preclude ornithine incorporation at specific sites of lacticin 481. The antibacterial activity of ornithine-containing lacticin 481 analogues was evaluated using <i>Bacillus subtilis</i> as the indicator strain. Overall, the synthetic biology pathway constructed here helped to elucidate aspects of the substrate preferences of OspR and SyncM, offering practical guidance to combine these modifications for further lantibiotic bioengineering.</p>","PeriodicalId":26,"journal":{"name":"ACS Synthetic Biology","volume":" ","pages":"4209-4217"},"PeriodicalIF":3.7000,"publicationDate":"2024-12-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Synthetic Biology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1021/acssynbio.4c00650","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/12/11 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
引用次数: 0

Abstract

Lacticin 481, a ribosomally synthesized and post-translationally modified peptide (RiPP), exhibits antimicrobial activity, for which its characteristic lanthionine and methyllanthionine ring structures are essential. The post-translational introduction of (methyl)lanthionines in lacticin 481 is catalyzed by the enzyme LctM. In addition to macrocycle formation, various other post-translational modifications can enhance and modulate the chemical and functional diversity of antimicrobial peptides. The incorporation of noncanonical amino acids, occurring in many nonribosomal peptides (NRPs), is a valuable strategy to improve the properties of antimicrobial peptides. Ornithine, a noncanonical amino acid, can be integrated into RiPPs through the conversion of arginine residues by the newly characterized peptide arginase OspR. Recently, a flexible expression system was described for engineering lanthipeptides using the post-translational modification enzyme SyncM, which has a relaxed substrate specificity. This study demonstrates that SyncM is able to catalyze the production of active lacticin 481 by recognition of a designed hybrid leader peptide, which enables the incorporation of both ornithine and (methyl)lanthionine. Utilizing this hybrid leader peptide, the functional order was established for the production of active ornithine-containing lacticin 481 analogues at positions 8 and 12 in vivo. Furthermore, this study demonstrates that prior lanthionine (Lan) and methyllanthionine (MeLan) formation may preclude ornithine incorporation at specific sites of lacticin 481. The antibacterial activity of ornithine-containing lacticin 481 analogues was evaluated using Bacillus subtilis as the indicator strain. Overall, the synthetic biology pathway constructed here helped to elucidate aspects of the substrate preferences of OspR and SyncM, offering practical guidance to combine these modifications for further lantibiotic bioengineering.

求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
8.00
自引率
10.60%
发文量
380
审稿时长
6-12 weeks
期刊介绍: The journal is particularly interested in studies on the design and synthesis of new genetic circuits and gene products; computational methods in the design of systems; and integrative applied approaches to understanding disease and metabolism. Topics may include, but are not limited to: Design and optimization of genetic systems Genetic circuit design and their principles for their organization into programs Computational methods to aid the design of genetic systems Experimental methods to quantify genetic parts, circuits, and metabolic fluxes Genetic parts libraries: their creation, analysis, and ontological representation Protein engineering including computational design Metabolic engineering and cellular manufacturing, including biomass conversion Natural product access, engineering, and production Creative and innovative applications of cellular programming Medical applications, tissue engineering, and the programming of therapeutic cells Minimal cell design and construction Genomics and genome replacement strategies Viral engineering Automated and robotic assembly platforms for synthetic biology DNA synthesis methodologies Metagenomics and synthetic metagenomic analysis Bioinformatics applied to gene discovery, chemoinformatics, and pathway construction Gene optimization Methods for genome-scale measurements of transcription and metabolomics Systems biology and methods to integrate multiple data sources in vitro and cell-free synthetic biology and molecular programming Nucleic acid engineering.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信