{"title":"FlexRT — A fast and flexible cosmological radiative transfer code for reionization studies. Part I. Code validation","authors":"Christopher Cain and Anson D'Aloisio","doi":"10.1088/1475-7516/2024/12/025","DOIUrl":null,"url":null,"abstract":"The wealth of high-quality observational data from the epoch of reionization that will become available in the next decade motivates further development of modeling techniques for their interpretation. Among the key challenges in modeling reionization are (1) its multi-scale nature, (2) the computational demands of solving the radiative transfer (RT) equation, and (3) the large size of reionization's parameter space. In this paper, we present and validate a new RT code designed to confront these challenges. FlexRT (Flexible Radiative Transfer) combines adaptive ray tracing with a highly flexible treatment of the intergalactic ionizing opacity. This gives the user control over how the intergalactic medium (IGM) is modeled, and provides a way to reduce the computational cost of a FlexRT simulation by orders of magnitude while still accounting for small-scale IGM physics. Alternatively, the user may increase the angular and spatial resolution of the algorithm to run a more traditional reionization simulation.FlexRT has already been used in several contexts, including simulations of the Lyman-α forest of high-z quasars, the redshifted 21cm signal from reionization, as well as in higher resolution reionization simulations in smaller volumes. In this work, we motivate and describe the code, and validate it against a set of standard test problems from the Cosmological Radiative Transfer Comparison Project. We find that FlexRT is in broad agreement with a number of existing RT codes in all of these tests. Lastly, we compare FlexRT to an existing adaptive ray tracing code to validate FlexRT in a cosmological reionization simulation.","PeriodicalId":15445,"journal":{"name":"Journal of Cosmology and Astroparticle Physics","volume":"49 1","pages":""},"PeriodicalIF":5.3000,"publicationDate":"2024-12-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Cosmology and Astroparticle Physics","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1088/1475-7516/2024/12/025","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ASTRONOMY & ASTROPHYSICS","Score":null,"Total":0}
引用次数: 0
Abstract
The wealth of high-quality observational data from the epoch of reionization that will become available in the next decade motivates further development of modeling techniques for their interpretation. Among the key challenges in modeling reionization are (1) its multi-scale nature, (2) the computational demands of solving the radiative transfer (RT) equation, and (3) the large size of reionization's parameter space. In this paper, we present and validate a new RT code designed to confront these challenges. FlexRT (Flexible Radiative Transfer) combines adaptive ray tracing with a highly flexible treatment of the intergalactic ionizing opacity. This gives the user control over how the intergalactic medium (IGM) is modeled, and provides a way to reduce the computational cost of a FlexRT simulation by orders of magnitude while still accounting for small-scale IGM physics. Alternatively, the user may increase the angular and spatial resolution of the algorithm to run a more traditional reionization simulation.FlexRT has already been used in several contexts, including simulations of the Lyman-α forest of high-z quasars, the redshifted 21cm signal from reionization, as well as in higher resolution reionization simulations in smaller volumes. In this work, we motivate and describe the code, and validate it against a set of standard test problems from the Cosmological Radiative Transfer Comparison Project. We find that FlexRT is in broad agreement with a number of existing RT codes in all of these tests. Lastly, we compare FlexRT to an existing adaptive ray tracing code to validate FlexRT in a cosmological reionization simulation.
期刊介绍:
Journal of Cosmology and Astroparticle Physics (JCAP) encompasses theoretical, observational and experimental areas as well as computation and simulation. The journal covers the latest developments in the theory of all fundamental interactions and their cosmological implications (e.g. M-theory and cosmology, brane cosmology). JCAP''s coverage also includes topics such as formation, dynamics and clustering of galaxies, pre-galactic star formation, x-ray astronomy, radio astronomy, gravitational lensing, active galactic nuclei, intergalactic and interstellar matter.