{"title":"Ruthenium-Catalyzed Carbocycle-Selective Hydrogenation of Fused Heteroarenes","authors":"Chenguang Luo, Chaozheng Wu, Xiaoming Wang, Zhaobin Han, Zheng Wang, Kuiling Ding","doi":"10.1021/jacs.4c05365","DOIUrl":null,"url":null,"abstract":"The homogeneous catalytic hydrogenation of benzo-fused heteroarenes generally provides partially hydrogenated products wherein the heteroaryl ring is preferentially reduced, such as quinoline hydrogenation, leading to 1,2,3,4-tetrahydroquinoline. Herein, we report a carbocycle-selective hydrogenation of fused <i>N</i>-heteroarenes (quinoline, isoquinoline, quinoxaline, etc.) using the Ru complex of a chiral spiroketal-based diphosphine (SKP) as the catalyst, affording the corresponding 5,6,7,8-tetrahydro products in high chemoselectivities. This catalytic system is also effective for the asymmetric carbocycle hydrogenation of fused heteroarenes bearing a boryl or amino group. Experimental studies provided a strong support for the homogeneous nature of the catalysis, and an inner-sphere mechanism was proposed for the hydrogenation. DFT calculations indicated that the hydrogenation is initiated by η<sup>4</sup>-coordinative activation of quinoline carbocycle to Ru dihydride complex of SKP, followed by metal-to-ligand hydride transfer. Subsequent carbocycle reduction proceeds via consecutive steps of the H<sub>2</sub> oxidative addition and C–H reductive elimination.","PeriodicalId":49,"journal":{"name":"Journal of the American Chemical Society","volume":"24 1","pages":""},"PeriodicalIF":14.4000,"publicationDate":"2024-12-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of the American Chemical Society","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1021/jacs.4c05365","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
The homogeneous catalytic hydrogenation of benzo-fused heteroarenes generally provides partially hydrogenated products wherein the heteroaryl ring is preferentially reduced, such as quinoline hydrogenation, leading to 1,2,3,4-tetrahydroquinoline. Herein, we report a carbocycle-selective hydrogenation of fused N-heteroarenes (quinoline, isoquinoline, quinoxaline, etc.) using the Ru complex of a chiral spiroketal-based diphosphine (SKP) as the catalyst, affording the corresponding 5,6,7,8-tetrahydro products in high chemoselectivities. This catalytic system is also effective for the asymmetric carbocycle hydrogenation of fused heteroarenes bearing a boryl or amino group. Experimental studies provided a strong support for the homogeneous nature of the catalysis, and an inner-sphere mechanism was proposed for the hydrogenation. DFT calculations indicated that the hydrogenation is initiated by η4-coordinative activation of quinoline carbocycle to Ru dihydride complex of SKP, followed by metal-to-ligand hydride transfer. Subsequent carbocycle reduction proceeds via consecutive steps of the H2 oxidative addition and C–H reductive elimination.
期刊介绍:
The flagship journal of the American Chemical Society, known as the Journal of the American Chemical Society (JACS), has been a prestigious publication since its establishment in 1879. It holds a preeminent position in the field of chemistry and related interdisciplinary sciences. JACS is committed to disseminating cutting-edge research papers, covering a wide range of topics, and encompasses approximately 19,000 pages of Articles, Communications, and Perspectives annually. With a weekly publication frequency, JACS plays a vital role in advancing the field of chemistry by providing essential research.