POUR-Net: A Population-Prior-Aided Over-Under-Representation Network for Low-Count PET Attenuation Map Generation

Bo Zhou;Jun Hou;Tianqi Chen;Yinchi Zhou;Xiongchao Chen;Huidong Xie;Qiong Liu;Xueqi Guo;Menghua Xia;Yu-Jung Tsai;Vladimir Y. Panin;Takuya Toyonaga;James S. Duncan;Chi Liu
{"title":"POUR-Net: A Population-Prior-Aided Over-Under-Representation Network for Low-Count PET Attenuation Map Generation","authors":"Bo Zhou;Jun Hou;Tianqi Chen;Yinchi Zhou;Xiongchao Chen;Huidong Xie;Qiong Liu;Xueqi Guo;Menghua Xia;Yu-Jung Tsai;Vladimir Y. Panin;Takuya Toyonaga;James S. Duncan;Chi Liu","doi":"10.1109/TMI.2024.3514925","DOIUrl":null,"url":null,"abstract":"Low-dose PET offers a valuable means of minimizing radiation exposure in PET imaging. However, the prevalent practice of employing additional CT scans for generating attenuation maps (<inline-formula> <tex-math>$\\mu $ </tex-math></inline-formula>-map) for PET attenuation correction significantly elevates radiation doses. To address this concern and further mitigate radiation exposure in low-dose PET exams, we propose an innovative Population-prior-aided Over-Under-Representation Network (POUR-Net) that aims for high-quality attenuation map generation from low-dose PET. First, POUR-Net incorporates an Over-Under-Representation Network (OUR-Net) to facilitate efficient feature extraction, encompassing both low-resolution abstracted and fine-detail features, for assisting deep generation on the full-resolution level. Second, complementing OUR-Net, a population prior generation machine (PPGM) utilizing a comprehensive CT-derived <inline-formula> <tex-math>$\\mu $ </tex-math></inline-formula>-map dataset, provides additional prior information to aid OUR-Net generation. The integration of OUR-Net and PPGM within a cascade framework enables iterative refinement of <inline-formula> <tex-math>$\\mu $ </tex-math></inline-formula>-map generation, resulting in the production of high-quality <inline-formula> <tex-math>$\\mu $ </tex-math></inline-formula>-maps. Experimental results underscore the effectiveness of POUR-Net, showing it as a promising solution for accurate CT-free low-count PET attenuation correction, which also surpasses the performance of previous baseline methods.","PeriodicalId":94033,"journal":{"name":"IEEE transactions on medical imaging","volume":"44 4","pages":"1699-1710"},"PeriodicalIF":0.0000,"publicationDate":"2024-12-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE transactions on medical imaging","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/10789190/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Low-dose PET offers a valuable means of minimizing radiation exposure in PET imaging. However, the prevalent practice of employing additional CT scans for generating attenuation maps ( $\mu $ -map) for PET attenuation correction significantly elevates radiation doses. To address this concern and further mitigate radiation exposure in low-dose PET exams, we propose an innovative Population-prior-aided Over-Under-Representation Network (POUR-Net) that aims for high-quality attenuation map generation from low-dose PET. First, POUR-Net incorporates an Over-Under-Representation Network (OUR-Net) to facilitate efficient feature extraction, encompassing both low-resolution abstracted and fine-detail features, for assisting deep generation on the full-resolution level. Second, complementing OUR-Net, a population prior generation machine (PPGM) utilizing a comprehensive CT-derived $\mu $ -map dataset, provides additional prior information to aid OUR-Net generation. The integration of OUR-Net and PPGM within a cascade framework enables iterative refinement of $\mu $ -map generation, resulting in the production of high-quality $\mu $ -maps. Experimental results underscore the effectiveness of POUR-Net, showing it as a promising solution for accurate CT-free low-count PET attenuation correction, which also surpasses the performance of previous baseline methods.
用于低计数PET衰减图生成的人口先验辅助过欠表示网络
低剂量PET在PET成像中提供了一种有价值的方法来减少辐射暴露。然而,采用额外的CT扫描生成衰减图($\mu $ -map)进行PET衰减校正的普遍做法显著提高了辐射剂量。为了解决这一问题并进一步减轻低剂量PET检查中的辐射暴露,我们提出了一种创新的人口优先辅助过代表性不足网络(POUR-Net),旨在从低剂量PET生成高质量的衰减图。首先,POUR-Net结合了一个over - underrepresentation Network (OUR-Net)来促进高效的特征提取,包括低分辨率抽象特征和精细细节特征,以帮助在全分辨率水平上进行深度生成。其次,作为ur - net的补充,利用全面的ct衍生的$\mu $ -map数据集的人口先验生成机(PPGM)提供了额外的先验信息,以帮助ur - net的生成。在级联框架内集成OUR-Net和PPGM,可以对$\mu $ -map生成进行迭代细化,从而生成高质量的$\mu $ -map。实验结果强调了POUR-Net的有效性,表明它是一种有前途的解决方案,可以精确地进行无ct的低计数PET衰减校正,其性能也超过了以前的基线方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信