Physics-Informed Deep Transfer Reinforcement Learning Method for the Input-Series Output-Parallel Dual Active Bridge-Based Auxiliary Power Modules in Electrical Aircraft

IF 8.3 1区 工程技术 Q1 ENGINEERING, ELECTRICAL & ELECTRONIC
Yu Zeng;Ziheng Xiao;Qingxiang Liu;Gaowen Liang;Ezequiel Rodriguez;Guibin Zou;Xin Zhang;Josep Pou
{"title":"Physics-Informed Deep Transfer Reinforcement Learning Method for the Input-Series Output-Parallel Dual Active Bridge-Based Auxiliary Power Modules in Electrical Aircraft","authors":"Yu Zeng;Ziheng Xiao;Qingxiang Liu;Gaowen Liang;Ezequiel Rodriguez;Guibin Zou;Xin Zhang;Josep Pou","doi":"10.1109/TTE.2024.3514657","DOIUrl":null,"url":null,"abstract":"This article proposes a physics-informed deep transfer reinforcement learning (PIDTRL) approach for power balance control and triple phase shift (TPS) modulation method for the input-series output-parallel dual active bridge (ISOP-DAB) converter-based auxiliary power module (APM) in electric aircraft. The approach involves three stages: 1) centralized training of deep reinforcement learning agents to balance power and reduce current stress in the ISOP-DAB converter; 2) effective knowledge transfer from a source simulation system to a target experimental system using minimal experimental data, providing a scalable solution without extensive data reliance; and 3) deployment of multiple agents for online control in the ISOP-DAB converter. The proposed method adaptively determines optimal modulation variables (duty cycles and phase shifts) in stochastic and uncertain environments without requiring accurate model information. The experimental results validate the effectiveness of the proposed PIDTRL algorithm.","PeriodicalId":56269,"journal":{"name":"IEEE Transactions on Transportation Electrification","volume":"11 2","pages":"6629-6639"},"PeriodicalIF":8.3000,"publicationDate":"2024-12-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Transportation Electrification","FirstCategoryId":"5","ListUrlMain":"https://ieeexplore.ieee.org/document/10789227/","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

Abstract

This article proposes a physics-informed deep transfer reinforcement learning (PIDTRL) approach for power balance control and triple phase shift (TPS) modulation method for the input-series output-parallel dual active bridge (ISOP-DAB) converter-based auxiliary power module (APM) in electric aircraft. The approach involves three stages: 1) centralized training of deep reinforcement learning agents to balance power and reduce current stress in the ISOP-DAB converter; 2) effective knowledge transfer from a source simulation system to a target experimental system using minimal experimental data, providing a scalable solution without extensive data reliance; and 3) deployment of multiple agents for online control in the ISOP-DAB converter. The proposed method adaptively determines optimal modulation variables (duty cycles and phase shifts) in stochastic and uncertain environments without requiring accurate model information. The experimental results validate the effectiveness of the proposed PIDTRL algorithm.
电动飞机输入-串联-输出-并联双有源桥式辅助电源模块的物理信息深度迁移强化学习方法
本文提出了一种基于物理信息的深度转移强化学习(PIDTRL)方法,用于电力飞机中基于输入-串联-输出-并联双有源桥式(ISOP-DAB)转换器的辅助电源模块(APM)的功率平衡控制和三相移(TPS)调制方法。该方法包括三个阶段:1)集中训练深度强化学习代理以平衡ISOP-DAB转换器中的功率和减小电流应力;2)从源模拟系统到目标实验系统的有效知识转移,使用最少的实验数据,提供可扩展的解决方案,而不需要大量的数据依赖;3)在ISOP-DAB转换器中部署多代理进行在线控制。该方法在不需要精确的模型信息的情况下,自适应地确定随机和不确定环境中的最优调制变量(占空比和相移)。实验结果验证了所提PIDTRL算法的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
IEEE Transactions on Transportation Electrification
IEEE Transactions on Transportation Electrification Engineering-Electrical and Electronic Engineering
CiteScore
12.20
自引率
15.70%
发文量
449
期刊介绍: IEEE Transactions on Transportation Electrification is focused on components, sub-systems, systems, standards, and grid interface technologies related to power and energy conversion, propulsion, and actuation for all types of electrified vehicles including on-road, off-road, off-highway, and rail vehicles, airplanes, and ships.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信