HamLib: A library of Hamiltonians for benchmarking quantum algorithms and hardware

IF 5.1 2区 物理与天体物理 Q1 PHYSICS, MULTIDISCIPLINARY
Quantum Pub Date : 2024-12-11 DOI:10.22331/q-2024-12-11-1559
Nicolas PD Sawaya, Daniel Marti-Dafcik, Yang Ho, Daniel P Tabor, David E Bernal Neira, Alicia B Magann, Shavindra Premaratne, Pradeep Dubey, Anne Matsuura, Nathan Bishop, Wibe A de Jong, Simon Benjamin, Ojas Parekh, Norm Tubman, Katherine Klymko, Daan Camps
{"title":"HamLib: A library of Hamiltonians for benchmarking quantum algorithms and hardware","authors":"Nicolas PD Sawaya, Daniel Marti-Dafcik, Yang Ho, Daniel P Tabor, David E Bernal Neira, Alicia B Magann, Shavindra Premaratne, Pradeep Dubey, Anne Matsuura, Nathan Bishop, Wibe A de Jong, Simon Benjamin, Ojas Parekh, Norm Tubman, Katherine Klymko, Daan Camps","doi":"10.22331/q-2024-12-11-1559","DOIUrl":null,"url":null,"abstract":"In order to characterize and benchmark computational hardware, software, and algorithms, it is essential to have many problem instances on-hand. This is no less true for quantum computation, where a large collection of real-world problem instances would allow for benchmarking studies that in turn help to improve both algorithms and hardware designs. To this end, here we present a large dataset of qubit-based quantum Hamiltonians. The dataset, called HamLib (for Hamiltonian Library), is freely available online and contains problem sizes ranging from 2 to 1000 qubits. HamLib includes problem instances of the Heisenberg model, Fermi-Hubbard model, Bose-Hubbard model, molecular electronic structure, molecular vibrational structure, MaxCut, Max-$k$-SAT, Max-$k$-Cut, QMaxCut, and the traveling salesperson problem. The goals of this effort are (a) to save researchers time by eliminating the need to prepare problem instances and map them to qubit representations, (b) to allow for more thorough tests of new algorithms and hardware, and (c) to allow for reproducibility and standardization across research studies.","PeriodicalId":20807,"journal":{"name":"Quantum","volume":"28 1","pages":""},"PeriodicalIF":5.1000,"publicationDate":"2024-12-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Quantum","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.22331/q-2024-12-11-1559","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PHYSICS, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

In order to characterize and benchmark computational hardware, software, and algorithms, it is essential to have many problem instances on-hand. This is no less true for quantum computation, where a large collection of real-world problem instances would allow for benchmarking studies that in turn help to improve both algorithms and hardware designs. To this end, here we present a large dataset of qubit-based quantum Hamiltonians. The dataset, called HamLib (for Hamiltonian Library), is freely available online and contains problem sizes ranging from 2 to 1000 qubits. HamLib includes problem instances of the Heisenberg model, Fermi-Hubbard model, Bose-Hubbard model, molecular electronic structure, molecular vibrational structure, MaxCut, Max-$k$-SAT, Max-$k$-Cut, QMaxCut, and the traveling salesperson problem. The goals of this effort are (a) to save researchers time by eliminating the need to prepare problem instances and map them to qubit representations, (b) to allow for more thorough tests of new algorithms and hardware, and (c) to allow for reproducibility and standardization across research studies.
为了确定计算硬件、软件和算法的特性并对其进行基准测试,拥有大量问题实例至关重要。量子计算也是如此,收集大量真实世界的问题实例有助于进行基准研究,进而帮助改进算法和硬件设计。为此,我们在此介绍一个基于量子比特的量子哈密顿的大型数据集。该数据集被称为 HamLib(汉密尔顿库),可在网上免费获取,包含的问题规模从 2 到 1000 量子比特不等。HamLib 包含海森堡模型、费米-哈伯德模型、玻色-哈伯德模型、分子电子结构、分子振动结构、MaxCut、Max-$k$-SAT、Max-$k$-Cut、QMaxCut 和旅行推销员问题的问题实例。这项工作的目标是:(a) 通过消除准备问题实例并将其映射到量子位表示的需要,节省研究人员的时间;(b) 允许对新算法和硬件进行更彻底的测试;(c) 允许在各项研究中实现可重复性和标准化。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Quantum
Quantum Physics and Astronomy-Physics and Astronomy (miscellaneous)
CiteScore
9.20
自引率
10.90%
发文量
241
审稿时长
16 weeks
期刊介绍: Quantum is an open-access peer-reviewed journal for quantum science and related fields. Quantum is non-profit and community-run: an effort by researchers and for researchers to make science more open and publishing more transparent and efficient.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信