Brian Suffoletto MD, MS, David Kim MD, PhD, Caitlin Toth BS, Waverly Mayer BS, Nick Ashenburg MD, Michelle Lin MD, Michael Losak MD
{"title":"Development of a model predicting falls in older emergency department patients using smartphone-based mobility measures","authors":"Brian Suffoletto MD, MS, David Kim MD, PhD, Caitlin Toth BS, Waverly Mayer BS, Nick Ashenburg MD, Michelle Lin MD, Michael Losak MD","doi":"10.1111/jgs.19303","DOIUrl":null,"url":null,"abstract":"<div>\n \n \n <section>\n \n <h3> Objective</h3>\n \n <p>While emergency departments (EDs) are crucial for identifying patients at risk for falls, existing fall risk measures are often inaccurate. This study aimed to assess whether iPhone sensor-based mobility measures collected after ED discharge can improve fall prediction compared with traditional ED-based screening measures.</p>\n </section>\n \n <section>\n \n <h3> Methods</h3>\n \n <p>This single-center, observational cohort study recruited ED patients aged 60 or older who owned an iPhone. Participants completed baseline assessments, downloaded a custom app to track mobility measures from the iPhone, and were followed for 90 days post-discharge. Fall outcomes were self-reported via the app or follow-up phone calls. Logistic regression and the LASSO technique were employed to identify significant predictors. The discriminative ability of the models was assessed by comparing the C-statistics.</p>\n </section>\n \n <section>\n \n <h3> Results</h3>\n \n <p>Of the 149 participants enrolled, 76.5% (<i>N</i> = 114) provided at least 7 days of post-discharge iPhone sensor-based mobility data. The cohort had a mean age of 73 years, with 16.7% (<i>N</i> = 19) experiencing a fall. Participants who fell showed a significantly greater increase in daily steps over time compared with those who did not (<i>p</i> = 0.002). The extended logistic regression model, by incorporating mean gait asymmetry and change in step count, demonstrated a higher but nonsignificant improvement in discriminative ability (C-statistic = 0.84) compared with the base model (C-statistic = 0.79).</p>\n </section>\n \n <section>\n \n <h3> Conclusions</h3>\n \n <p>This study demonstrates that iPhone mobility measures collected after ED discharge can enhance fall prediction relative to self-reported fall risk screening questions in older adults. The strongest mobility predictors were gait asymmetry and changes in step count. While the findings suggest that post-discharge mobility monitoring could improve fall prevention strategies, further validation in diverse populations is necessary.</p>\n </section>\n </div>","PeriodicalId":17240,"journal":{"name":"Journal of the American Geriatrics Society","volume":"73 3","pages":"791-801"},"PeriodicalIF":4.3000,"publicationDate":"2024-12-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of the American Geriatrics Society","FirstCategoryId":"3","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/jgs.19303","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"GERIATRICS & GERONTOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Objective
While emergency departments (EDs) are crucial for identifying patients at risk for falls, existing fall risk measures are often inaccurate. This study aimed to assess whether iPhone sensor-based mobility measures collected after ED discharge can improve fall prediction compared with traditional ED-based screening measures.
Methods
This single-center, observational cohort study recruited ED patients aged 60 or older who owned an iPhone. Participants completed baseline assessments, downloaded a custom app to track mobility measures from the iPhone, and were followed for 90 days post-discharge. Fall outcomes were self-reported via the app or follow-up phone calls. Logistic regression and the LASSO technique were employed to identify significant predictors. The discriminative ability of the models was assessed by comparing the C-statistics.
Results
Of the 149 participants enrolled, 76.5% (N = 114) provided at least 7 days of post-discharge iPhone sensor-based mobility data. The cohort had a mean age of 73 years, with 16.7% (N = 19) experiencing a fall. Participants who fell showed a significantly greater increase in daily steps over time compared with those who did not (p = 0.002). The extended logistic regression model, by incorporating mean gait asymmetry and change in step count, demonstrated a higher but nonsignificant improvement in discriminative ability (C-statistic = 0.84) compared with the base model (C-statistic = 0.79).
Conclusions
This study demonstrates that iPhone mobility measures collected after ED discharge can enhance fall prediction relative to self-reported fall risk screening questions in older adults. The strongest mobility predictors were gait asymmetry and changes in step count. While the findings suggest that post-discharge mobility monitoring could improve fall prevention strategies, further validation in diverse populations is necessary.
期刊介绍:
Journal of the American Geriatrics Society (JAGS) is the go-to journal for clinical aging research. We provide a diverse, interprofessional community of healthcare professionals with the latest insights on geriatrics education, clinical practice, and public policy—all supporting the high-quality, person-centered care essential to our well-being as we age. Since the publication of our first edition in 1953, JAGS has remained one of the oldest and most impactful journals dedicated exclusively to gerontology and geriatrics.