Development and experimental validation of an in-house treatment planning system with greedy energy layer optimization for fast IMPT.

ArXiv Pub Date : 2024-11-27
Aoxiang Wang, Ya-Nan Zhu, Jufri Setianegara, Yuting Lin, Peng Xiao, Qingguo Xie, Hao Gao
{"title":"Development and experimental validation of an in-house treatment planning system with greedy energy layer optimization for fast IMPT.","authors":"Aoxiang Wang, Ya-Nan Zhu, Jufri Setianegara, Yuting Lin, Peng Xiao, Qingguo Xie, Hao Gao","doi":"","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Intensity-modulated proton therapy (IMPT) using pencil beam technique scans tumor in a layer by layer, then spot by spot manner. It can provide highly conformal dose to tumor targets and spare nearby organs-at-risk (OAR). Fast delivery of IMPT can improve patient comfort and reduce motion-induced uncertainties. Since energy layer switching time dominants the plan delivery time, reducing the number of energy layers is important for improving delivery efficiency. Although various energy layer optimization (ELO) methods exist, they are rarely experimentally validated or clinically implemented, since it is technically challenging to integrate these methods into commercially available treatment planning system (TPS) that is not open-source.</p><p><strong>Purpose: </strong>This work develops and experimentally validates an in-house TPS (IH-TPS) that incorporates a novel ELO method for the purpose of fast IMPT.</p><p><strong>Methods: </strong>The dose calculation accuracy of IH-TPS is verified against the measured beam data and the RayStation TPS. For treatment planning, a novel ELO method via greed selection algorithm is proposed to reduce energy layer switching time and total plan delivery time. To validate the planning accuracy of IH-TPS, the 3D gamma index is calculated between IH-TPS plans and RayStation plans for various scenarios. Patient-specific quality-assurance (QA) verifications are conducted to experimentally verify the delivered dose from the IH-TPS plans for several clinical cases.</p><p><strong>Results: </strong>Dose distributions in IH-TPS matched with those from RayStation TPS, with 3D gamma index results exceeding 95% (2mm, 2%). The ELO method significantly reduced the delivery time while maintaining plan quality. For instance, in a brain case, the number of energy layers was reduced from 78 to 40, leading to a 62% reduction in total delivery time. Patient-specific QA validation with the IBA Proteus<sup>®</sup>ONE proton machine confirmed a >95% pass rate for all cases.</p><p><strong>Conclusions: </strong>An IH-TPS equipped with a novel ELO algorithm is developed and experimentally validated for the purpose of fast IMPT, with enhanced delivery efficiency and preserved plan quality.</p>","PeriodicalId":93888,"journal":{"name":"ArXiv","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-11-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11623709/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ArXiv","FirstCategoryId":"1085","ListUrlMain":"","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Background: Intensity-modulated proton therapy (IMPT) using pencil beam technique scans tumor in a layer by layer, then spot by spot manner. It can provide highly conformal dose to tumor targets and spare nearby organs-at-risk (OAR). Fast delivery of IMPT can improve patient comfort and reduce motion-induced uncertainties. Since energy layer switching time dominants the plan delivery time, reducing the number of energy layers is important for improving delivery efficiency. Although various energy layer optimization (ELO) methods exist, they are rarely experimentally validated or clinically implemented, since it is technically challenging to integrate these methods into commercially available treatment planning system (TPS) that is not open-source.

Purpose: This work develops and experimentally validates an in-house TPS (IH-TPS) that incorporates a novel ELO method for the purpose of fast IMPT.

Methods: The dose calculation accuracy of IH-TPS is verified against the measured beam data and the RayStation TPS. For treatment planning, a novel ELO method via greed selection algorithm is proposed to reduce energy layer switching time and total plan delivery time. To validate the planning accuracy of IH-TPS, the 3D gamma index is calculated between IH-TPS plans and RayStation plans for various scenarios. Patient-specific quality-assurance (QA) verifications are conducted to experimentally verify the delivered dose from the IH-TPS plans for several clinical cases.

Results: Dose distributions in IH-TPS matched with those from RayStation TPS, with 3D gamma index results exceeding 95% (2mm, 2%). The ELO method significantly reduced the delivery time while maintaining plan quality. For instance, in a brain case, the number of energy layers was reduced from 78 to 40, leading to a 62% reduction in total delivery time. Patient-specific QA validation with the IBA Proteus®ONE proton machine confirmed a >95% pass rate for all cases.

Conclusions: An IH-TPS equipped with a novel ELO algorithm is developed and experimentally validated for the purpose of fast IMPT, with enhanced delivery efficiency and preserved plan quality.

求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信