Current State of Community-Driven Radiological AI Deployment in Medical Imaging.

JMIR AI Pub Date : 2024-12-09 DOI:10.2196/55833
Vikash Gupta, Barbaros Erdal, Carolina Ramirez, Ralf Floca, Bradley Genereaux, Sidney Bryson, Christopher Bridge, Jens Kleesiek, Felix Nensa, Rickmer Braren, Khaled Younis, Tobias Penzkofer, Andreas Michael Bucher, Ming Melvin Qin, Gigon Bae, Hyeonhoon Lee, M Jorge Cardoso, Sebastien Ourselin, Eric Kerfoot, Rahul Choudhury, Richard D White, Tessa Cook, David Bericat, Matthew Lungren, Risto Haukioja, Haris Shuaib
{"title":"Current State of Community-Driven Radiological AI Deployment in Medical Imaging.","authors":"Vikash Gupta, Barbaros Erdal, Carolina Ramirez, Ralf Floca, Bradley Genereaux, Sidney Bryson, Christopher Bridge, Jens Kleesiek, Felix Nensa, Rickmer Braren, Khaled Younis, Tobias Penzkofer, Andreas Michael Bucher, Ming Melvin Qin, Gigon Bae, Hyeonhoon Lee, M Jorge Cardoso, Sebastien Ourselin, Eric Kerfoot, Rahul Choudhury, Richard D White, Tessa Cook, David Bericat, Matthew Lungren, Risto Haukioja, Haris Shuaib","doi":"10.2196/55833","DOIUrl":null,"url":null,"abstract":"<p><p>Artificial intelligence (AI) has become commonplace in solving routine everyday tasks. Because of the exponential growth in medical imaging data volume and complexity, the workload on radiologists is steadily increasing. AI has been shown to improve efficiency in medical image generation, processing, and interpretation, and various such AI models have been developed across research laboratories worldwide. However, very few of these, if any, find their way into routine clinical use, a discrepancy that reflects the divide between AI research and successful AI translation. The goal of this paper is to give an overview of the intersection of AI and medical imaging landscapes. We also want to inform the readers about the importance of using standards in their radiology workflow and the challenges associated with deploying AI models in the clinical workflow. The main focus of this paper is to examine the existing condition of radiology workflow and identify the challenges hindering the implementation of AI in hospital settings. This report reflects extensive weekly discussions and practical problem-solving expertise accumulated over multiple years by industry experts, imaging informatics professionals, research scientists, and clinicians. To gain a deeper understanding of the requirements for deploying AI models, we introduce a taxonomy of AI use cases, supplemented by real-world instances of AI model integration within hospitals. We will also explain how the need for AI integration in radiology can be addressed using the Medical Open Network for AI (MONAI). MONAI is an open-source consortium for providing reproducible deep learning solutions and integration tools for radiology practice in hospitals.</p>","PeriodicalId":73551,"journal":{"name":"JMIR AI","volume":"3 ","pages":"e55833"},"PeriodicalIF":0.0000,"publicationDate":"2024-12-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11667144/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"JMIR AI","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2196/55833","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Artificial intelligence (AI) has become commonplace in solving routine everyday tasks. Because of the exponential growth in medical imaging data volume and complexity, the workload on radiologists is steadily increasing. AI has been shown to improve efficiency in medical image generation, processing, and interpretation, and various such AI models have been developed across research laboratories worldwide. However, very few of these, if any, find their way into routine clinical use, a discrepancy that reflects the divide between AI research and successful AI translation. The goal of this paper is to give an overview of the intersection of AI and medical imaging landscapes. We also want to inform the readers about the importance of using standards in their radiology workflow and the challenges associated with deploying AI models in the clinical workflow. The main focus of this paper is to examine the existing condition of radiology workflow and identify the challenges hindering the implementation of AI in hospital settings. This report reflects extensive weekly discussions and practical problem-solving expertise accumulated over multiple years by industry experts, imaging informatics professionals, research scientists, and clinicians. To gain a deeper understanding of the requirements for deploying AI models, we introduce a taxonomy of AI use cases, supplemented by real-world instances of AI model integration within hospitals. We will also explain how the need for AI integration in radiology can be addressed using the Medical Open Network for AI (MONAI). MONAI is an open-source consortium for providing reproducible deep learning solutions and integration tools for radiology practice in hospitals.

医学影像领域社区驱动的放射人工智能部署现状。
人工智能(AI)在解决日常事务方面已经变得司空见惯。由于医学影像数据量和复杂性的指数级增长,放射科医生的工作量正在稳步增加。人工智能已被证明可以提高医学图像生成、处理和解释的效率,世界各地的研究实验室已经开发了各种人工智能模型。然而,其中很少有(如果有的话)能够进入常规临床应用,这一差异反映了人工智能研究与成功的人工智能翻译之间的鸿沟。本文的目的是概述人工智能和医学成像景观的交叉。我们还希望告知读者在放射学工作流程中使用标准的重要性,以及在临床工作流程中部署人工智能模型所面临的挑战。本文的主要重点是研究放射学工作流程的现有状况,并确定阻碍在医院环境中实施人工智能的挑战。该报告反映了行业专家、成像信息学专业人员、研究科学家和临床医生多年来积累的广泛的每周讨论和实际解决问题的专业知识。为了更深入地了解部署人工智能模型的需求,我们引入了人工智能用例的分类,并辅以医院内人工智能模型集成的实际实例。我们还将解释如何使用人工智能医疗开放网络(MONAI)来解决放射学中人工智能集成的需求。MONAI是一个开源联盟,为医院放射学实践提供可重复的深度学习解决方案和集成工具。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信