A statistical modelling approach for determining the cause of reported respiratory syndromes from internet-based participatory surveillance when influenza virus and SARS-CoV-2 are co-circulating.

PLOS digital health Pub Date : 2024-12-09 eCollection Date: 2024-12-01 DOI:10.1371/journal.pdig.0000655
Scott A McDonald, Albert Jan van Hoek, Daniela Paolotti, Mariette Hooiveld, Adam Meijer, Marit de Lange, Arianne van Gageldonk-Lafeber, Jacco Wallinga
{"title":"A statistical modelling approach for determining the cause of reported respiratory syndromes from internet-based participatory surveillance when influenza virus and SARS-CoV-2 are co-circulating.","authors":"Scott A McDonald, Albert Jan van Hoek, Daniela Paolotti, Mariette Hooiveld, Adam Meijer, Marit de Lange, Arianne van Gageldonk-Lafeber, Jacco Wallinga","doi":"10.1371/journal.pdig.0000655","DOIUrl":null,"url":null,"abstract":"<p><p>Symptom-only case definitions are insufficient to discriminate COVID-like illness from acute respiratory infection (ARI) or influenza-like illness (ILI), due to the overlap in case definitions. Our objective was to develop a statistical method that does not rely on case definitions to determine the contribution of influenza virus and SARS-CoV-2 to the ARI burden during periods when both viruses are circulating. Data sources used for testing the approach were weekly ARI syndrome reports from the Infectieradar participatory syndromic surveillance system during the analysis period (the first 25 weeks of 2022, in which SARS-CoV-2 and influenza virus co-circulated in the Netherlands) and data from virologically tested ARI (including ILI) patients who consulted a general practitioner in the same period. Estimation of the proportions of ARI attributable to influenza virus, SARS-CoV-2, or another cause was framed as an inference problem, through which all data sources are combined within a Bayesian framework to infer the weekly numbers of ARI reports attributable to each cause. Posterior distributions for the attribution proportions were obtained using Markov Chain Monte-Carlo methods. Application of the approach to the example data sources indicated that, of the total ARI reports (total of 11,312; weekly mean of 452) during the analysis period, the model attributed 35.4% (95% CrI: 29.2-40.0%) and 27.0% (95% CrI: 19.3-35.2%) to influenza virus and SARS-CoV-2, respectively. The proposed statistical model allows the attribution of respiratory syndrome reports from participatory surveillance to either influenza virus or SARS-CoV-2 infection in periods when both viruses are circulating, but comparability of the participatory surveillance and virologically tested populations is important. Portability for use by other countries with established participatory respiratory surveillance systems is an asset.</p>","PeriodicalId":74465,"journal":{"name":"PLOS digital health","volume":"3 12","pages":"e0000655"},"PeriodicalIF":0.0000,"publicationDate":"2024-12-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11627408/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"PLOS digital health","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1371/journal.pdig.0000655","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/12/1 0:00:00","PubModel":"eCollection","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Symptom-only case definitions are insufficient to discriminate COVID-like illness from acute respiratory infection (ARI) or influenza-like illness (ILI), due to the overlap in case definitions. Our objective was to develop a statistical method that does not rely on case definitions to determine the contribution of influenza virus and SARS-CoV-2 to the ARI burden during periods when both viruses are circulating. Data sources used for testing the approach were weekly ARI syndrome reports from the Infectieradar participatory syndromic surveillance system during the analysis period (the first 25 weeks of 2022, in which SARS-CoV-2 and influenza virus co-circulated in the Netherlands) and data from virologically tested ARI (including ILI) patients who consulted a general practitioner in the same period. Estimation of the proportions of ARI attributable to influenza virus, SARS-CoV-2, or another cause was framed as an inference problem, through which all data sources are combined within a Bayesian framework to infer the weekly numbers of ARI reports attributable to each cause. Posterior distributions for the attribution proportions were obtained using Markov Chain Monte-Carlo methods. Application of the approach to the example data sources indicated that, of the total ARI reports (total of 11,312; weekly mean of 452) during the analysis period, the model attributed 35.4% (95% CrI: 29.2-40.0%) and 27.0% (95% CrI: 19.3-35.2%) to influenza virus and SARS-CoV-2, respectively. The proposed statistical model allows the attribution of respiratory syndrome reports from participatory surveillance to either influenza virus or SARS-CoV-2 infection in periods when both viruses are circulating, but comparability of the participatory surveillance and virologically tested populations is important. Portability for use by other countries with established participatory respiratory surveillance systems is an asset.

求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信