Suboccipital Cisterna Magna Injection for Vehicle Delivery in Pigs Using Computed Tomography

Luke S. Myers, Sarah Christian, Jennifer Fridley, Scott V. Dindot
{"title":"Suboccipital Cisterna Magna Injection for Vehicle Delivery in Pigs Using Computed Tomography","authors":"Luke S. Myers,&nbsp;Sarah Christian,&nbsp;Jennifer Fridley,&nbsp;Scott V. Dindot","doi":"10.1002/cpz1.70069","DOIUrl":null,"url":null,"abstract":"<p>Gene therapies are being developed for several central nervous system (CNS) disorders. These therapies are primarily administered to the CNS via the cerebrospinal fluid (CSF), as the blood–brain barrier prevents the transport of large molecules to the brain. Currently, intrathecal injection is the most commonly used route of administration over cisterna magna injections in the clinic for gaining access to the CSF. However, studies in nonhuman primates (NHPs) have shown that administering gene therapies via suboccipital cisterna magna injection results in superior distribution and more cells being transduced in the brain compared to lumbar injection. It has also been reported that comparable CNS size is important when translating therapeutic dosages from animal studies to human trials. Therefore, we chose to develop a computed tomography (CT)-guided cisterna magna injection protocol in pigs as they are anatomically closer in size to humans than nonhuman primates and rodents. Pigs are also a readily available and cost-effective large animal model for preclinical studies compared to nonhuman NHPs. In this paper, we describe a method for CT-guided suboccipital cisterna magna injections in pigs. We developed this protocol utilizing CT to confirm needle placement with three-dimensional visualization. A CT-guided injection minimizes procedural risk and can be performed without a contrast agent, which is required in magnetic resonance and fluoroscopy imaging. © 2024 Wiley Periodicals LLC.</p><p><b>Basic Protocol</b>: Computed tomography–guided suboccipital cisterna magna injection in pigs to confirm needle placement prior to the administration of a test article or vehicle</p>","PeriodicalId":93970,"journal":{"name":"Current protocols","volume":"4 12","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-12-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Current protocols","FirstCategoryId":"1085","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/cpz1.70069","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Gene therapies are being developed for several central nervous system (CNS) disorders. These therapies are primarily administered to the CNS via the cerebrospinal fluid (CSF), as the blood–brain barrier prevents the transport of large molecules to the brain. Currently, intrathecal injection is the most commonly used route of administration over cisterna magna injections in the clinic for gaining access to the CSF. However, studies in nonhuman primates (NHPs) have shown that administering gene therapies via suboccipital cisterna magna injection results in superior distribution and more cells being transduced in the brain compared to lumbar injection. It has also been reported that comparable CNS size is important when translating therapeutic dosages from animal studies to human trials. Therefore, we chose to develop a computed tomography (CT)-guided cisterna magna injection protocol in pigs as they are anatomically closer in size to humans than nonhuman primates and rodents. Pigs are also a readily available and cost-effective large animal model for preclinical studies compared to nonhuman NHPs. In this paper, we describe a method for CT-guided suboccipital cisterna magna injections in pigs. We developed this protocol utilizing CT to confirm needle placement with three-dimensional visualization. A CT-guided injection minimizes procedural risk and can be performed without a contrast agent, which is required in magnetic resonance and fluoroscopy imaging. © 2024 Wiley Periodicals LLC.

Basic Protocol: Computed tomography–guided suboccipital cisterna magna injection in pigs to confirm needle placement prior to the administration of a test article or vehicle

求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
4.00
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信