Unveiling the hidden depths: advancements in underwater image enhancement using deep learning and auto-encoders.

IF 3.5 4区 计算机科学 Q2 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE
PeerJ Computer Science Pub Date : 2024-11-29 eCollection Date: 2024-01-01 DOI:10.7717/peerj-cs.2392
Jaisuraj Bantupalli, Amal John Kachapilly, Sanjukta Roy, Pavithra L K
{"title":"Unveiling the hidden depths: advancements in underwater image enhancement using deep learning and auto-encoders.","authors":"Jaisuraj Bantupalli, Amal John Kachapilly, Sanjukta Roy, Pavithra L K","doi":"10.7717/peerj-cs.2392","DOIUrl":null,"url":null,"abstract":"<p><p>Underwater images hold immense value for various fields, including marine biology research, underwater infrastructure inspection, and exploration activities. However, capturing high-quality images underwater proves challenging due to light absorption and scattering leading to color distortion, blue green hues. Additionally, these phenomena decrease contrast and visibility, hindering the ability to extract valuable information. Existing image enhancement methods often struggle to achieve accurate color correction while preserving crucial image details. This article proposes a novel deep learning-based approach for underwater image enhancement that leverages the power of autoencoders. Specifically, a convolutional autoencoder is trained to learn a mapping from the distorted colors present in underwater images to their true, color-corrected counterparts. The proposed model is trained and tested using the Enhancing Underwater Visual Perception (EUVP) and Underwater Image Enhancement Benchmark (UIEB) datasets. The performance of the model is evaluated and compared with various traditional and deep learning based image enhancement techniques using the quality measures structural similarity index (SSIM), peak signal-to-noise ratio (PSNR) and mean squared error (MSE). This research aims to address the critical limitations of current techniques by offering a superior method for underwater image enhancement by improving color fidelity and better information extraction capabilities for various applications. Our proposed color correction model based on encoder decoder network achieves higher SSIM and PSNR values.</p>","PeriodicalId":54224,"journal":{"name":"PeerJ Computer Science","volume":"10 ","pages":"e2392"},"PeriodicalIF":3.5000,"publicationDate":"2024-11-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11623242/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"PeerJ Computer Science","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.7717/peerj-cs.2392","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/1/1 0:00:00","PubModel":"eCollection","JCR":"Q2","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0

Abstract

Underwater images hold immense value for various fields, including marine biology research, underwater infrastructure inspection, and exploration activities. However, capturing high-quality images underwater proves challenging due to light absorption and scattering leading to color distortion, blue green hues. Additionally, these phenomena decrease contrast and visibility, hindering the ability to extract valuable information. Existing image enhancement methods often struggle to achieve accurate color correction while preserving crucial image details. This article proposes a novel deep learning-based approach for underwater image enhancement that leverages the power of autoencoders. Specifically, a convolutional autoencoder is trained to learn a mapping from the distorted colors present in underwater images to their true, color-corrected counterparts. The proposed model is trained and tested using the Enhancing Underwater Visual Perception (EUVP) and Underwater Image Enhancement Benchmark (UIEB) datasets. The performance of the model is evaluated and compared with various traditional and deep learning based image enhancement techniques using the quality measures structural similarity index (SSIM), peak signal-to-noise ratio (PSNR) and mean squared error (MSE). This research aims to address the critical limitations of current techniques by offering a superior method for underwater image enhancement by improving color fidelity and better information extraction capabilities for various applications. Our proposed color correction model based on encoder decoder network achieves higher SSIM and PSNR values.

求助全文
约1分钟内获得全文 求助全文
来源期刊
PeerJ Computer Science
PeerJ Computer Science Computer Science-General Computer Science
CiteScore
6.10
自引率
5.30%
发文量
332
审稿时长
10 weeks
期刊介绍: PeerJ Computer Science is the new open access journal covering all subject areas in computer science, with the backing of a prestigious advisory board and more than 300 academic editors.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信