Optimizing maize germination forecasts with random forest and data fusion techniques.

IF 3.5 4区 计算机科学 Q2 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE
PeerJ Computer Science Pub Date : 2024-11-28 eCollection Date: 2024-01-01 DOI:10.7717/peerj-cs.2468
Lili Wu, Yuqing Xing, Kaiwen Yang, Wenqiang Li, Guangyue Ren, Debang Zhang, Huiping Fan
{"title":"Optimizing maize germination forecasts with random forest and data fusion techniques.","authors":"Lili Wu, Yuqing Xing, Kaiwen Yang, Wenqiang Li, Guangyue Ren, Debang Zhang, Huiping Fan","doi":"10.7717/peerj-cs.2468","DOIUrl":null,"url":null,"abstract":"<p><p>Traditional methods for detecting seed germination rates often involve lengthy experiments that result in damaged seeds. This study selected the Zheng Dan-958 maize variety to predict germination rates using multi-source information fusion and a random forest (RF) algorithm. Images of the seeds and internal cracks were captured with a digital camera. In contrast, the dielectric constant of the seeds was measured using a flat capacitor and converted into voltage readings. Features such as color, shape, texture, crack count, and normalized voltage were used to form feature vectors. Various prediction algorithms, including random forest (RF), radial basis function (RBF), neural networks (NNs), support vector machine (SVM), and extreme learning machine (ELM), were developed and tested against standard germination experiments. The RF model stood out, with a training time of 5.18 s and the highest accuracy of 92.88%, along with a mean absolute error (MAE) of 0.913 and a root mean square error (RMSE) of 1.163. The study concluded that the RF model, combined with multi-source information fusion, offers a feasible and nondestructive method for quickly and accurately predicting maize seed germination rates.</p>","PeriodicalId":54224,"journal":{"name":"PeerJ Computer Science","volume":"10 ","pages":"e2468"},"PeriodicalIF":3.5000,"publicationDate":"2024-11-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11623106/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"PeerJ Computer Science","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.7717/peerj-cs.2468","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/1/1 0:00:00","PubModel":"eCollection","JCR":"Q2","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0

Abstract

Traditional methods for detecting seed germination rates often involve lengthy experiments that result in damaged seeds. This study selected the Zheng Dan-958 maize variety to predict germination rates using multi-source information fusion and a random forest (RF) algorithm. Images of the seeds and internal cracks were captured with a digital camera. In contrast, the dielectric constant of the seeds was measured using a flat capacitor and converted into voltage readings. Features such as color, shape, texture, crack count, and normalized voltage were used to form feature vectors. Various prediction algorithms, including random forest (RF), radial basis function (RBF), neural networks (NNs), support vector machine (SVM), and extreme learning machine (ELM), were developed and tested against standard germination experiments. The RF model stood out, with a training time of 5.18 s and the highest accuracy of 92.88%, along with a mean absolute error (MAE) of 0.913 and a root mean square error (RMSE) of 1.163. The study concluded that the RF model, combined with multi-source information fusion, offers a feasible and nondestructive method for quickly and accurately predicting maize seed germination rates.

求助全文
约1分钟内获得全文 求助全文
来源期刊
PeerJ Computer Science
PeerJ Computer Science Computer Science-General Computer Science
CiteScore
6.10
自引率
5.30%
发文量
332
审稿时长
10 weeks
期刊介绍: PeerJ Computer Science is the new open access journal covering all subject areas in computer science, with the backing of a prestigious advisory board and more than 300 academic editors.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信