Slovak morphological tokenizer using the Byte-Pair Encoding algorithm.

IF 3.5 4区 计算机科学 Q2 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE
PeerJ Computer Science Pub Date : 2024-11-19 eCollection Date: 2024-01-01 DOI:10.7717/peerj-cs.2465
Dávid Držík, Frantisek Forgac
{"title":"Slovak morphological tokenizer using the Byte-Pair Encoding algorithm.","authors":"Dávid Držík, Frantisek Forgac","doi":"10.7717/peerj-cs.2465","DOIUrl":null,"url":null,"abstract":"<p><p>This study introduces a new approach to text tokenization, SlovaK Morphological Tokenizer (SKMT), which integrates the morphology of the Slovak language into the training process using the Byte-Pair Encoding (BPE) algorithm. Unlike conventional tokenizers, SKMT focuses on preserving the integrity of word roots in individual tokens, crucial for maintaining lexical meaning. The methodology involves segmenting and extracting word roots from morphological dictionaries and databases, followed by <i>corpus</i> preprocessing and training SKMT alongside a traditional BPE tokenizer. Comparative evaluation against existing tokenizers demonstrates SKMT's outstanding ability to maintain root integrity, achieving 99.7% root integrity compared to SlovakBERT (90.5%) and a pureBPE tokenizer (93.1%). Further validation involved fine-tuning models on a sentiment classification NLP task, where models trained with SKMT achieved an F1-score improvement of 3.5% over those trained with conventional BPE tokenization, followed by a focus on the Semantic Textual Similarity (STS) task. These findings suggest that training language models on the SKMT tokenizer significantly enhances model performance and quality.</p>","PeriodicalId":54224,"journal":{"name":"PeerJ Computer Science","volume":"10 ","pages":"e2465"},"PeriodicalIF":3.5000,"publicationDate":"2024-11-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11622830/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"PeerJ Computer Science","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.7717/peerj-cs.2465","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/1/1 0:00:00","PubModel":"eCollection","JCR":"Q2","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0

Abstract

This study introduces a new approach to text tokenization, SlovaK Morphological Tokenizer (SKMT), which integrates the morphology of the Slovak language into the training process using the Byte-Pair Encoding (BPE) algorithm. Unlike conventional tokenizers, SKMT focuses on preserving the integrity of word roots in individual tokens, crucial for maintaining lexical meaning. The methodology involves segmenting and extracting word roots from morphological dictionaries and databases, followed by corpus preprocessing and training SKMT alongside a traditional BPE tokenizer. Comparative evaluation against existing tokenizers demonstrates SKMT's outstanding ability to maintain root integrity, achieving 99.7% root integrity compared to SlovakBERT (90.5%) and a pureBPE tokenizer (93.1%). Further validation involved fine-tuning models on a sentiment classification NLP task, where models trained with SKMT achieved an F1-score improvement of 3.5% over those trained with conventional BPE tokenization, followed by a focus on the Semantic Textual Similarity (STS) task. These findings suggest that training language models on the SKMT tokenizer significantly enhances model performance and quality.

求助全文
约1分钟内获得全文 求助全文
来源期刊
PeerJ Computer Science
PeerJ Computer Science Computer Science-General Computer Science
CiteScore
6.10
自引率
5.30%
发文量
332
审稿时长
10 weeks
期刊介绍: PeerJ Computer Science is the new open access journal covering all subject areas in computer science, with the backing of a prestigious advisory board and more than 300 academic editors.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信