Enhancing brain tumor MRI classification with an ensemble of deep learning models and transformer integration.

IF 3.5 4区 计算机科学 Q2 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE
PeerJ Computer Science Pub Date : 2024-11-27 eCollection Date: 2024-01-01 DOI:10.7717/peerj-cs.2425
Nawal Benzorgat, Kewen Xia, Mustapha Noure Eddine Benzorgat
{"title":"Enhancing brain tumor MRI classification with an ensemble of deep learning models and transformer integration.","authors":"Nawal Benzorgat, Kewen Xia, Mustapha Noure Eddine Benzorgat","doi":"10.7717/peerj-cs.2425","DOIUrl":null,"url":null,"abstract":"<p><p>Brain tumors are widely recognized as the primary cause of cancer-related mortality globally, necessitating precise detection to enhance patient survival rates. The early identification of brain tumor is presented with significant challenges in the healthcare domain, necessitating the implementation of precise and efficient diagnostic methodologies. The manual identification and analysis of extensive MRI data are presented as a challenging and laborious task, compounded by the importance of early tumor detection in reducing mortality rates. Prompt initiation of treatment hinges upon identifying the specific tumor type in patients, emphasizing the urgency for a dependable deep learning methodology for precise diagnosis. In this research, a hybrid model is presented which integrates the strengths of both transfer learning and the transformer encoder mechanism. After the performance evaluation of the efficacy of six pre-existing deep learning model, both individually and in combination, it was determined that an ensemble of three pretrained models achieved the highest accuracy. This ensemble, comprising DenseNet201, GoogleNet (InceptionV3), and InceptionResNetV2, is selected as the feature extraction framework for the transformer encoder network. The transformer encoder module integrates a Shifted Window-based Self-Attention mechanism, sequential Self-Attention, with a multilayer perceptron layer (MLP). These experiments were conducted on three publicly available research datasets for evaluation purposes. The Cheng dataset, BT-large-2c, and BT-large-4c dataset, each designed for various classification tasks with differences in sample number, planes, and contrast. The model gives consistent results on all three datasets and reaches an accuracy of 99.34%, 99.16%, and 98.62%, respectively, which are improved compared to other techniques.</p>","PeriodicalId":54224,"journal":{"name":"PeerJ Computer Science","volume":"10 ","pages":"e2425"},"PeriodicalIF":3.5000,"publicationDate":"2024-11-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11623201/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"PeerJ Computer Science","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.7717/peerj-cs.2425","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/1/1 0:00:00","PubModel":"eCollection","JCR":"Q2","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0

Abstract

Brain tumors are widely recognized as the primary cause of cancer-related mortality globally, necessitating precise detection to enhance patient survival rates. The early identification of brain tumor is presented with significant challenges in the healthcare domain, necessitating the implementation of precise and efficient diagnostic methodologies. The manual identification and analysis of extensive MRI data are presented as a challenging and laborious task, compounded by the importance of early tumor detection in reducing mortality rates. Prompt initiation of treatment hinges upon identifying the specific tumor type in patients, emphasizing the urgency for a dependable deep learning methodology for precise diagnosis. In this research, a hybrid model is presented which integrates the strengths of both transfer learning and the transformer encoder mechanism. After the performance evaluation of the efficacy of six pre-existing deep learning model, both individually and in combination, it was determined that an ensemble of three pretrained models achieved the highest accuracy. This ensemble, comprising DenseNet201, GoogleNet (InceptionV3), and InceptionResNetV2, is selected as the feature extraction framework for the transformer encoder network. The transformer encoder module integrates a Shifted Window-based Self-Attention mechanism, sequential Self-Attention, with a multilayer perceptron layer (MLP). These experiments were conducted on three publicly available research datasets for evaluation purposes. The Cheng dataset, BT-large-2c, and BT-large-4c dataset, each designed for various classification tasks with differences in sample number, planes, and contrast. The model gives consistent results on all three datasets and reaches an accuracy of 99.34%, 99.16%, and 98.62%, respectively, which are improved compared to other techniques.

求助全文
约1分钟内获得全文 求助全文
来源期刊
PeerJ Computer Science
PeerJ Computer Science Computer Science-General Computer Science
CiteScore
6.10
自引率
5.30%
发文量
332
审稿时长
10 weeks
期刊介绍: PeerJ Computer Science is the new open access journal covering all subject areas in computer science, with the backing of a prestigious advisory board and more than 300 academic editors.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信