Enhancing Alzheimer's disease classification through split federated learning and GANs for imbalanced datasets.

IF 3.5 4区 计算机科学 Q2 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE
PeerJ Computer Science Pub Date : 2024-11-29 eCollection Date: 2024-01-01 DOI:10.7717/peerj-cs.2459
G Narayanee Nimeshika, Subitha D
{"title":"Enhancing Alzheimer's disease classification through split federated learning and GANs for imbalanced datasets.","authors":"G Narayanee Nimeshika, Subitha D","doi":"10.7717/peerj-cs.2459","DOIUrl":null,"url":null,"abstract":"<p><p>In the rapidly evolving healthcare sector, using advanced technologies to improve medical classification systems has become crucial for enhancing patient care, diagnosis, and treatment planning. There are two main challenges faced in this domain (i) imbalanced distribution of medical data, leading to biased model performance and (ii) the need to preserve patient privacy and comply with data protection regulations. The primary goal of this project is to develop a medical classification model for Alzheimer's disease detection that can effectively learn from decentralized and imbalanced datasets without compromising on data privacy. The proposed system aims to address these challenges by employing an approach that combines split federated learning (SFL) with conditional generative adversarial networks (cGANs) to enhance medical classification models. SFL enables efficient set of distributed agents that collaboratively train learning models without sharing their data, thus improving data privacy and the integration of conditional GANs aims to improve the model's ability to generalize across imbalanced classes by generating realistic synthetic samples for minority classes. The proposed system provided an accuracy of approximately 83.54 percentage for the Alzheimer's disease classification dataset.</p>","PeriodicalId":54224,"journal":{"name":"PeerJ Computer Science","volume":"10 ","pages":"e2459"},"PeriodicalIF":3.5000,"publicationDate":"2024-11-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11623002/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"PeerJ Computer Science","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.7717/peerj-cs.2459","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/1/1 0:00:00","PubModel":"eCollection","JCR":"Q2","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0

Abstract

In the rapidly evolving healthcare sector, using advanced technologies to improve medical classification systems has become crucial for enhancing patient care, diagnosis, and treatment planning. There are two main challenges faced in this domain (i) imbalanced distribution of medical data, leading to biased model performance and (ii) the need to preserve patient privacy and comply with data protection regulations. The primary goal of this project is to develop a medical classification model for Alzheimer's disease detection that can effectively learn from decentralized and imbalanced datasets without compromising on data privacy. The proposed system aims to address these challenges by employing an approach that combines split federated learning (SFL) with conditional generative adversarial networks (cGANs) to enhance medical classification models. SFL enables efficient set of distributed agents that collaboratively train learning models without sharing their data, thus improving data privacy and the integration of conditional GANs aims to improve the model's ability to generalize across imbalanced classes by generating realistic synthetic samples for minority classes. The proposed system provided an accuracy of approximately 83.54 percentage for the Alzheimer's disease classification dataset.

求助全文
约1分钟内获得全文 求助全文
来源期刊
PeerJ Computer Science
PeerJ Computer Science Computer Science-General Computer Science
CiteScore
6.10
自引率
5.30%
发文量
332
审稿时长
10 weeks
期刊介绍: PeerJ Computer Science is the new open access journal covering all subject areas in computer science, with the backing of a prestigious advisory board and more than 300 academic editors.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信