Hierarchical multi-label classification model for science and technology news based on heterogeneous graph semantic enhancement.

IF 3.5 4区 计算机科学 Q2 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE
PeerJ Computer Science Pub Date : 2024-11-12 eCollection Date: 2024-01-01 DOI:10.7717/peerj-cs.2469
Quan Cheng, Jingyi Cheng, Jian Chen, Shaojun Liu
{"title":"Hierarchical multi-label classification model for science and technology news based on heterogeneous graph semantic enhancement.","authors":"Quan Cheng, Jingyi Cheng, Jian Chen, Shaojun Liu","doi":"10.7717/peerj-cs.2469","DOIUrl":null,"url":null,"abstract":"<p><p>In the context of high-quality economic development, technological innovation has emerged as a fundamental driver of socio-economic progress. The consequent proliferation of science and technology news, which acts as a vital medium for disseminating technological advancements and policy changes, has attracted considerable attention from technology management agencies and innovation organizations. Nevertheless, online science and technology news has historically exhibited characteristics such as limited scale, disorderliness, and multi-dimensionality, which is extremely inconvenient for users of deep application. While single-label classification techniques can effectively categorize textual information, they face challenges in leading science and technology news classification due to a lack of a hierarchical knowledge framework and insufficient capacity to reveal knowledge integration features. This study proposes a hierarchical multi-label classification model for science and technology news, enhanced by heterogeneous graph semantics. The model captures multi-dimensional themes and hierarchical structural features within science and technology news through a hierarchical transmission module. It integrates graph convolutional networks to extract node information and hierarchical relationships from heterogeneous graphs, while also incorporating prior knowledge from domain knowledge graphs to address data scarcity. This approach enhances the understanding and classification capabilities of the semantics of science and technology news. Experimental results demonstrate that the model achieves precision, recall, and F1 scores of 84.21%, 88.89%, and 86.49%, respectively, significantly surpassing baseline models. This research presents an innovative solution for hierarchical multi-label classification tasks, demonstrating significant application potential in addressing data scarcity and complex thematic classification challenges.</p>","PeriodicalId":54224,"journal":{"name":"PeerJ Computer Science","volume":"10 ","pages":"e2469"},"PeriodicalIF":3.5000,"publicationDate":"2024-11-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11623068/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"PeerJ Computer Science","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.7717/peerj-cs.2469","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/1/1 0:00:00","PubModel":"eCollection","JCR":"Q2","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0

Abstract

In the context of high-quality economic development, technological innovation has emerged as a fundamental driver of socio-economic progress. The consequent proliferation of science and technology news, which acts as a vital medium for disseminating technological advancements and policy changes, has attracted considerable attention from technology management agencies and innovation organizations. Nevertheless, online science and technology news has historically exhibited characteristics such as limited scale, disorderliness, and multi-dimensionality, which is extremely inconvenient for users of deep application. While single-label classification techniques can effectively categorize textual information, they face challenges in leading science and technology news classification due to a lack of a hierarchical knowledge framework and insufficient capacity to reveal knowledge integration features. This study proposes a hierarchical multi-label classification model for science and technology news, enhanced by heterogeneous graph semantics. The model captures multi-dimensional themes and hierarchical structural features within science and technology news through a hierarchical transmission module. It integrates graph convolutional networks to extract node information and hierarchical relationships from heterogeneous graphs, while also incorporating prior knowledge from domain knowledge graphs to address data scarcity. This approach enhances the understanding and classification capabilities of the semantics of science and technology news. Experimental results demonstrate that the model achieves precision, recall, and F1 scores of 84.21%, 88.89%, and 86.49%, respectively, significantly surpassing baseline models. This research presents an innovative solution for hierarchical multi-label classification tasks, demonstrating significant application potential in addressing data scarcity and complex thematic classification challenges.

求助全文
约1分钟内获得全文 求助全文
来源期刊
PeerJ Computer Science
PeerJ Computer Science Computer Science-General Computer Science
CiteScore
6.10
自引率
5.30%
发文量
332
审稿时长
10 weeks
期刊介绍: PeerJ Computer Science is the new open access journal covering all subject areas in computer science, with the backing of a prestigious advisory board and more than 300 academic editors.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信