EFR-FCOS: enhancing feature reuse for anchor-free object detector.

IF 3.5 4区 计算机科学 Q2 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE
PeerJ Computer Science Pub Date : 2024-11-29 eCollection Date: 2024-01-01 DOI:10.7717/peerj-cs.2470
Yongwei Liao, Zhenjun Li, Wenlong Feng, Yibin Zhang, Bing Zhou
{"title":"EFR-FCOS: enhancing feature reuse for anchor-free object detector.","authors":"Yongwei Liao, Zhenjun Li, Wenlong Feng, Yibin Zhang, Bing Zhou","doi":"10.7717/peerj-cs.2470","DOIUrl":null,"url":null,"abstract":"<p><p>In this paper, we propose enhancing feature reuse for fully convolutional one-stage object detection (EFR-FCOS) to aim at backbone, neck and head, which are three main components of object detection. For the backbone, we build a global attention network (GANet) using the block with global attention connections to extract prominent features and acquire global information from feature maps. For the neck, we design an aggregate feature fusion pyramid network (AFF-FPN) to fuse the information of feature maps with different receptive fields, which uses the attention module to extract aggregated features and reduce the decay of information in process of the feature fusion. For the head, we construct a feature reuse head (EnHead) to detect objects, which adopts the cascade detection by the refined bounding box regression to improve the confidence of the classification and regression. The experiments conducted on the COCO dataset show that the proposed approaches are extensive usability and achieve significant performance for object detection.</p>","PeriodicalId":54224,"journal":{"name":"PeerJ Computer Science","volume":"10 ","pages":"e2470"},"PeriodicalIF":3.5000,"publicationDate":"2024-11-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11623005/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"PeerJ Computer Science","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.7717/peerj-cs.2470","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/1/1 0:00:00","PubModel":"eCollection","JCR":"Q2","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0

Abstract

In this paper, we propose enhancing feature reuse for fully convolutional one-stage object detection (EFR-FCOS) to aim at backbone, neck and head, which are three main components of object detection. For the backbone, we build a global attention network (GANet) using the block with global attention connections to extract prominent features and acquire global information from feature maps. For the neck, we design an aggregate feature fusion pyramid network (AFF-FPN) to fuse the information of feature maps with different receptive fields, which uses the attention module to extract aggregated features and reduce the decay of information in process of the feature fusion. For the head, we construct a feature reuse head (EnHead) to detect objects, which adopts the cascade detection by the refined bounding box regression to improve the confidence of the classification and regression. The experiments conducted on the COCO dataset show that the proposed approaches are extensive usability and achieve significant performance for object detection.

EFR-FCOS:增强无锚目标检测器的特征重用。
本文针对目标检测的三个主要组成部分——脊柱、颈部和头部,提出了增强全卷积单阶段目标检测(EFR-FCOS)特征重用的方法。对于骨干网,我们利用具有全局关注连接的块构建全局关注网络(GANet),提取突出特征,从特征图中获取全局信息。对于颈部,我们设计了一个聚合特征融合金字塔网络(AFF-FPN)来融合具有不同感受域的特征映射信息,该网络利用注意力模块提取聚合特征,减少特征融合过程中信息的衰减。对于头部,我们构建了一个特征重用头部(EnHead)来检测目标,该头部采用了细化边界盒回归的级联检测,提高了分类和回归的置信度。在COCO数据集上进行的实验表明,所提出的方法具有广泛的可用性,并且在目标检测方面取得了显著的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
PeerJ Computer Science
PeerJ Computer Science Computer Science-General Computer Science
CiteScore
6.10
自引率
5.30%
发文量
332
审稿时长
10 weeks
期刊介绍: PeerJ Computer Science is the new open access journal covering all subject areas in computer science, with the backing of a prestigious advisory board and more than 300 academic editors.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信