Image enhancement with art design: a visual feature approach with a CNN-transformer fusion model.

IF 3.5 4区 计算机科学 Q2 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE
PeerJ Computer Science Pub Date : 2024-11-13 eCollection Date: 2024-01-01 DOI:10.7717/peerj-cs.2417
Ming Xu, Jinwei Cui, Xiaoyu Ma, Zhiyi Zou, Zhisheng Xin, Muhammad Bilal
{"title":"Image enhancement with art design: a visual feature approach with a CNN-transformer fusion model.","authors":"Ming Xu, Jinwei Cui, Xiaoyu Ma, Zhiyi Zou, Zhisheng Xin, Muhammad Bilal","doi":"10.7717/peerj-cs.2417","DOIUrl":null,"url":null,"abstract":"<p><p>Graphic design, as a product of the burgeoning new media era, has seen its users' requirements for images continuously evolve. However, external factors such as light and noise often cause graphic design images to become distorted during acquisition. To enhance the definition of these images, this paper introduces a novel image enhancement model based on visual features. Initially, a histogram equalization (HE) algorithm is applied to enhance the graphic design images. Subsequently, image feature extraction is performed using a dual-flow network comprising convolutional neural network (CNN) and Transformer architectures. The CNN employs a residual dense block (RDB) to embed spatial local structure information with varying receptive fields. An improved attention mechanism module, attention feature fusion (AFF), is then introduced to integrate the image features extracted from the dual-flow network. Finally, through image perception quality guided adversarial learning, the model adjusts the initial enhanced image's color and recovers more details. Experimental results demonstrate that the proposed algorithm model achieves enhancement effects exceeding 90% on two large image datasets, which represents a 5%-10% improvement over other models. Furthermore, the algorithm exhibits superior performance in terms of peak signal-to-noise ratio (PSNR) and structural similarity index measure (SSIM) image quality evaluation metrics. Our findings indicate that the fusion model significantly enhances image quality, thereby advancing the field of graphic design and showcasing its potential in cultural and creative product design.</p>","PeriodicalId":54224,"journal":{"name":"PeerJ Computer Science","volume":"10 ","pages":"e2417"},"PeriodicalIF":3.5000,"publicationDate":"2024-11-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11623052/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"PeerJ Computer Science","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.7717/peerj-cs.2417","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/1/1 0:00:00","PubModel":"eCollection","JCR":"Q2","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0

Abstract

Graphic design, as a product of the burgeoning new media era, has seen its users' requirements for images continuously evolve. However, external factors such as light and noise often cause graphic design images to become distorted during acquisition. To enhance the definition of these images, this paper introduces a novel image enhancement model based on visual features. Initially, a histogram equalization (HE) algorithm is applied to enhance the graphic design images. Subsequently, image feature extraction is performed using a dual-flow network comprising convolutional neural network (CNN) and Transformer architectures. The CNN employs a residual dense block (RDB) to embed spatial local structure information with varying receptive fields. An improved attention mechanism module, attention feature fusion (AFF), is then introduced to integrate the image features extracted from the dual-flow network. Finally, through image perception quality guided adversarial learning, the model adjusts the initial enhanced image's color and recovers more details. Experimental results demonstrate that the proposed algorithm model achieves enhancement effects exceeding 90% on two large image datasets, which represents a 5%-10% improvement over other models. Furthermore, the algorithm exhibits superior performance in terms of peak signal-to-noise ratio (PSNR) and structural similarity index measure (SSIM) image quality evaluation metrics. Our findings indicate that the fusion model significantly enhances image quality, thereby advancing the field of graphic design and showcasing its potential in cultural and creative product design.

求助全文
约1分钟内获得全文 求助全文
来源期刊
PeerJ Computer Science
PeerJ Computer Science Computer Science-General Computer Science
CiteScore
6.10
自引率
5.30%
发文量
332
审稿时长
10 weeks
期刊介绍: PeerJ Computer Science is the new open access journal covering all subject areas in computer science, with the backing of a prestigious advisory board and more than 300 academic editors.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信