Federated learning-driven collaborative recommendation system for multi-modal art analysis and enhanced recommendations.

IF 3.5 4区 计算机科学 Q2 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE
PeerJ Computer Science Pub Date : 2024-11-27 eCollection Date: 2024-01-01 DOI:10.7717/peerj-cs.2405
Bei Gong, Ida Puteri Mahsan, Junhua Xiao
{"title":"Federated learning-driven collaborative recommendation system for multi-modal art analysis and enhanced recommendations.","authors":"Bei Gong, Ida Puteri Mahsan, Junhua Xiao","doi":"10.7717/peerj-cs.2405","DOIUrl":null,"url":null,"abstract":"<p><p>With the rapid development of artificial intelligence technology, recommendation systems have been widely applied in various fields. However, in the art field, art similarity search and recommendation systems face unique challenges, namely data privacy and copyright protection issues. To address these problems, this article proposes a cross-institutional artwork similarity search and recommendation system (AI-based Collaborative Recommendation System (AICRS) framework) that combines multimodal data fusion and federated learning. This system uses pre-trained convolutional neural networks (CNN) and Bidirectional Encoder Representation from Transformers (BERT) models to extract features from image and text data. It then uses a federated learning framework to train models locally at each participating institution and aggregate parameters to optimize the global model. Experimental results show that the AICRS framework achieves a final accuracy of 92.02% on the SemArt dataset, compared to 81.52% and 83.44% for traditional CNN and Long Short-Term Memory (LSTM) models, respectively. The final loss value of the AICRS framework is 0.1284, which is better than the 0.248 and 0.188 of CNN and LSTM models. The research results of this article not only provide an effective technical solution but also offer strong support for the recommendation and protection of artworks in practice.</p>","PeriodicalId":54224,"journal":{"name":"PeerJ Computer Science","volume":"10 ","pages":"e2405"},"PeriodicalIF":3.5000,"publicationDate":"2024-11-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11623116/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"PeerJ Computer Science","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.7717/peerj-cs.2405","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/1/1 0:00:00","PubModel":"eCollection","JCR":"Q2","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0

Abstract

With the rapid development of artificial intelligence technology, recommendation systems have been widely applied in various fields. However, in the art field, art similarity search and recommendation systems face unique challenges, namely data privacy and copyright protection issues. To address these problems, this article proposes a cross-institutional artwork similarity search and recommendation system (AI-based Collaborative Recommendation System (AICRS) framework) that combines multimodal data fusion and federated learning. This system uses pre-trained convolutional neural networks (CNN) and Bidirectional Encoder Representation from Transformers (BERT) models to extract features from image and text data. It then uses a federated learning framework to train models locally at each participating institution and aggregate parameters to optimize the global model. Experimental results show that the AICRS framework achieves a final accuracy of 92.02% on the SemArt dataset, compared to 81.52% and 83.44% for traditional CNN and Long Short-Term Memory (LSTM) models, respectively. The final loss value of the AICRS framework is 0.1284, which is better than the 0.248 and 0.188 of CNN and LSTM models. The research results of this article not only provide an effective technical solution but also offer strong support for the recommendation and protection of artworks in practice.

求助全文
约1分钟内获得全文 求助全文
来源期刊
PeerJ Computer Science
PeerJ Computer Science Computer Science-General Computer Science
CiteScore
6.10
自引率
5.30%
发文量
332
审稿时长
10 weeks
期刊介绍: PeerJ Computer Science is the new open access journal covering all subject areas in computer science, with the backing of a prestigious advisory board and more than 300 academic editors.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信