Angle information assisting skeleton-based actions recognition.

IF 3.5 4区 计算机科学 Q2 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE
PeerJ Computer Science Pub Date : 2024-11-29 eCollection Date: 2024-01-01 DOI:10.7717/peerj-cs.2523
Chengming Liu, Jiahao Guan, Haibo Pang, Lei Shi, Yidan Chen
{"title":"Angle information assisting skeleton-based actions recognition.","authors":"Chengming Liu, Jiahao Guan, Haibo Pang, Lei Shi, Yidan Chen","doi":"10.7717/peerj-cs.2523","DOIUrl":null,"url":null,"abstract":"<p><p>In human skeleton-based action recognition, graph convolutional networks (GCN) have shown significant success. However, existing state-of-the-art methods struggle with complex actions, such as figure skating, where performance is often unsatisfactory. This issue arises from two main factors: the lack of shift, scale, and rotation invariance in GCN, making them especially vulnerable to perspective distortions in 2D coordinates, and the high variability in displacement velocity, which depends more on the athlete's individual capabilities than the actions themselves, reducing the effectiveness of motion information. To address these challenges, we propose a novel cosine stream to enhance the robustness of spatial features and introduce a Keyframe Sampling algorithm for more effective temporal feature extraction, eliminating the need for motion information. Our methods do not require modifications to the backbone. Experiments on the FSD-10, FineGYM, and NTU RGB+D datasets demonstrate a 2.6% improvement in Top-1 accuracy on the FSD-10 figure skating dataset compared to current state-of-the-art methods. The code has been made available at: https://github.com/Jiahao-Guan/pyskl_cosine.</p>","PeriodicalId":54224,"journal":{"name":"PeerJ Computer Science","volume":"10 ","pages":"e2523"},"PeriodicalIF":3.5000,"publicationDate":"2024-11-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11623218/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"PeerJ Computer Science","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.7717/peerj-cs.2523","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/1/1 0:00:00","PubModel":"eCollection","JCR":"Q2","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0

Abstract

In human skeleton-based action recognition, graph convolutional networks (GCN) have shown significant success. However, existing state-of-the-art methods struggle with complex actions, such as figure skating, where performance is often unsatisfactory. This issue arises from two main factors: the lack of shift, scale, and rotation invariance in GCN, making them especially vulnerable to perspective distortions in 2D coordinates, and the high variability in displacement velocity, which depends more on the athlete's individual capabilities than the actions themselves, reducing the effectiveness of motion information. To address these challenges, we propose a novel cosine stream to enhance the robustness of spatial features and introduce a Keyframe Sampling algorithm for more effective temporal feature extraction, eliminating the need for motion information. Our methods do not require modifications to the backbone. Experiments on the FSD-10, FineGYM, and NTU RGB+D datasets demonstrate a 2.6% improvement in Top-1 accuracy on the FSD-10 figure skating dataset compared to current state-of-the-art methods. The code has been made available at: https://github.com/Jiahao-Guan/pyskl_cosine.

求助全文
约1分钟内获得全文 求助全文
来源期刊
PeerJ Computer Science
PeerJ Computer Science Computer Science-General Computer Science
CiteScore
6.10
自引率
5.30%
发文量
332
审稿时长
10 weeks
期刊介绍: PeerJ Computer Science is the new open access journal covering all subject areas in computer science, with the backing of a prestigious advisory board and more than 300 academic editors.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信