Augmented reality for epilepsy surgery: Examining usability and efficacy in presurgical planning.

IF 1.9 4区 医学 Q3 CLINICAL NEUROLOGY
Rishit Chilappa, Abhi Kapuria, Jefferson Norwood, Athena Yao, Matthew Vestal, Muhammad Shahzad Zafar
{"title":"Augmented reality for epilepsy surgery: Examining usability and efficacy in presurgical planning.","authors":"Rishit Chilappa, Abhi Kapuria, Jefferson Norwood, Athena Yao, Matthew Vestal, Muhammad Shahzad Zafar","doi":"10.1002/epd2.20322","DOIUrl":null,"url":null,"abstract":"<p><strong>Objective: </strong>The aim of this paper was to visualize 3-dimensional (3-D) brain and electrode placement data for epilepsy surgery within an augmented reality (AR) environment using a wearable headset, with the ultimate goal of enhancing presurgical planning for epilepsy surgery and understanding the efficiency and utility of such a program in a clinical setting. The evaluation process for surgical intervention in epilepsy cases involves a series of extensive tests, including EEG, MRI, PET, SPECT, and fMRI. A second phase of assessment incorporates the placement of depth electrodes within the brain to record seizure activity. The culmination of these complex data is presented to the neurosurgery team for the formulation of a surgical plan. However, the conventional presentation of intricate 3-D data on a 2-dimensional (2-D) computer monitor limits the ability to convey the full depth and detail of the patient's brain and electrode data.</p><p><strong>Methods: </strong>Five images were selected from a cohort of patients being evaluated for refractory epilepsy at a single center. Their presurgical MRI scans, SEEG electrode data, and CT scans were utilized to generate 3-D AR representations, which were uploaded onto the Duke Augmented Reality Epilepsy Planner (AREP), an application on the Microsoft HoloLens 2. A survey was administered to faculty members to determine usability and effectiveness of the application.</p><p><strong>Results: </strong>AR images of the brain and electrodes, allowing resizing, movement, and rotation, with distinct colors differentiating tissue and electrodes, were presented in AREP. The application featured an interactive image manipulation menu. Survey results from 18 faculty members regarding seven questions indicated that AREP was user-friendly and can be effective in presurgical planning moving forward.</p><p><strong>Significance: </strong>AR integration of medical imaging data for epilepsy surgery transcends its role as a communication tool. It provides a deeper representation of surgical anatomy and serves as a valuable method for fostering communication among clinicians.</p>","PeriodicalId":50508,"journal":{"name":"Epileptic Disorders","volume":" ","pages":""},"PeriodicalIF":1.9000,"publicationDate":"2024-12-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Epileptic Disorders","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1002/epd2.20322","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CLINICAL NEUROLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Objective: The aim of this paper was to visualize 3-dimensional (3-D) brain and electrode placement data for epilepsy surgery within an augmented reality (AR) environment using a wearable headset, with the ultimate goal of enhancing presurgical planning for epilepsy surgery and understanding the efficiency and utility of such a program in a clinical setting. The evaluation process for surgical intervention in epilepsy cases involves a series of extensive tests, including EEG, MRI, PET, SPECT, and fMRI. A second phase of assessment incorporates the placement of depth electrodes within the brain to record seizure activity. The culmination of these complex data is presented to the neurosurgery team for the formulation of a surgical plan. However, the conventional presentation of intricate 3-D data on a 2-dimensional (2-D) computer monitor limits the ability to convey the full depth and detail of the patient's brain and electrode data.

Methods: Five images were selected from a cohort of patients being evaluated for refractory epilepsy at a single center. Their presurgical MRI scans, SEEG electrode data, and CT scans were utilized to generate 3-D AR representations, which were uploaded onto the Duke Augmented Reality Epilepsy Planner (AREP), an application on the Microsoft HoloLens 2. A survey was administered to faculty members to determine usability and effectiveness of the application.

Results: AR images of the brain and electrodes, allowing resizing, movement, and rotation, with distinct colors differentiating tissue and electrodes, were presented in AREP. The application featured an interactive image manipulation menu. Survey results from 18 faculty members regarding seven questions indicated that AREP was user-friendly and can be effective in presurgical planning moving forward.

Significance: AR integration of medical imaging data for epilepsy surgery transcends its role as a communication tool. It provides a deeper representation of surgical anatomy and serves as a valuable method for fostering communication among clinicians.

求助全文
约1分钟内获得全文 求助全文
来源期刊
Epileptic Disorders
Epileptic Disorders 医学-临床神经学
CiteScore
4.10
自引率
8.70%
发文量
138
审稿时长
6-12 weeks
期刊介绍: Epileptic Disorders is the leading forum where all experts and medical studentswho wish to improve their understanding of epilepsy and related disorders can share practical experiences surrounding diagnosis and care, natural history, and management of seizures. Epileptic Disorders is the official E-journal of the International League Against Epilepsy for educational communication. As the journal celebrates its 20th anniversary, it will now be available only as an online version. Its mission is to create educational links between epileptologists and other health professionals in clinical practice and scientists or physicians in research-based institutions. This change is accompanied by an increase in the number of issues per year, from 4 to 6, to ensure regular diffusion of recently published material (high quality Review and Seminar in Epileptology papers; Original Research articles or Case reports of educational value; MultiMedia Teaching Material), to serve the global medical community that cares for those affected by epilepsy.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信