Detecting and forecasting cryptojacking attack trends in Internet of Things and wireless sensor networks devices.

IF 3.5 4区 计算机科学 Q2 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE
PeerJ Computer Science Pub Date : 2024-11-29 eCollection Date: 2024-01-01 DOI:10.7717/peerj-cs.2491
Kishor Kumar Reddy C, Vijaya Sindhoori Kaza, Madana Mohana R, Abdulrahman Alamer, Shadab Alam, Mohammed Shuaib, Sultan Basudan, Abdullah Sheneamer
{"title":"Detecting and forecasting cryptojacking attack trends in Internet of Things and wireless sensor networks devices.","authors":"Kishor Kumar Reddy C, Vijaya Sindhoori Kaza, Madana Mohana R, Abdulrahman Alamer, Shadab Alam, Mohammed Shuaib, Sultan Basudan, Abdullah Sheneamer","doi":"10.7717/peerj-cs.2491","DOIUrl":null,"url":null,"abstract":"<p><p>This research addresses the critical issue of cryptojacking attacks, a significant cybersecurity threat where malicious actors covertly exploit computational resources for unauthorized cryptocurrency mining, particularly in wireless sensor networks (WSN) and Internet of Things (IoT) devices. The article proposes an innovative approach that integrates time series analysis with graph neural networks (GNNs) to forecast/detect cryptojacking attack trends within these vulnerable ecosystems. Utilizing the \"Cryptojacking Attack Timeseries Dataset,\" the proposed method emphasizes early detection and predictive insights to anticipate emerging attack patterns. Through rigorous experiments, the model demonstrated high accuracy with ARIMA achieving up to 99.98% on specific attributes and the GNN model yielding an accuracy of 99.99%. Despite these strengths, the ensemble approach showed a slightly lower overall accuracy of 90.97%. Despite the reduction in accuracy compared to individual models, the ensemble method enhances predictive robustness and adaptability, making it more effective in identifying emerging cryptojacking trends amidst varying network conditions. This research significantly contributes to enhancing cybersecurity measures against the evolving threat of cryptojacking in WSN and IoT environments by providing a robust, proactive defence mechanism.</p>","PeriodicalId":54224,"journal":{"name":"PeerJ Computer Science","volume":"10 ","pages":"e2491"},"PeriodicalIF":3.5000,"publicationDate":"2024-11-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11623100/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"PeerJ Computer Science","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.7717/peerj-cs.2491","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/1/1 0:00:00","PubModel":"eCollection","JCR":"Q2","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0

Abstract

This research addresses the critical issue of cryptojacking attacks, a significant cybersecurity threat where malicious actors covertly exploit computational resources for unauthorized cryptocurrency mining, particularly in wireless sensor networks (WSN) and Internet of Things (IoT) devices. The article proposes an innovative approach that integrates time series analysis with graph neural networks (GNNs) to forecast/detect cryptojacking attack trends within these vulnerable ecosystems. Utilizing the "Cryptojacking Attack Timeseries Dataset," the proposed method emphasizes early detection and predictive insights to anticipate emerging attack patterns. Through rigorous experiments, the model demonstrated high accuracy with ARIMA achieving up to 99.98% on specific attributes and the GNN model yielding an accuracy of 99.99%. Despite these strengths, the ensemble approach showed a slightly lower overall accuracy of 90.97%. Despite the reduction in accuracy compared to individual models, the ensemble method enhances predictive robustness and adaptability, making it more effective in identifying emerging cryptojacking trends amidst varying network conditions. This research significantly contributes to enhancing cybersecurity measures against the evolving threat of cryptojacking in WSN and IoT environments by providing a robust, proactive defence mechanism.

求助全文
约1分钟内获得全文 求助全文
来源期刊
PeerJ Computer Science
PeerJ Computer Science Computer Science-General Computer Science
CiteScore
6.10
自引率
5.30%
发文量
332
审稿时长
10 weeks
期刊介绍: PeerJ Computer Science is the new open access journal covering all subject areas in computer science, with the backing of a prestigious advisory board and more than 300 academic editors.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信