An innovative artificial neural network model for smart crop prediction using sensory network based soil data.

IF 3.5 4区 计算机科学 Q2 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE
PeerJ Computer Science Pub Date : 2024-11-29 eCollection Date: 2024-01-01 DOI:10.7717/peerj-cs.2478
Shabana Ramzan, Basharat Ali, Ali Raza, Ibrar Hussain, Norma Latif Fitriyani, Yeonghyeon Gu, Muhammad Syafrudin
{"title":"An innovative artificial neural network model for smart crop prediction using sensory network based soil data.","authors":"Shabana Ramzan, Basharat Ali, Ali Raza, Ibrar Hussain, Norma Latif Fitriyani, Yeonghyeon Gu, Muhammad Syafrudin","doi":"10.7717/peerj-cs.2478","DOIUrl":null,"url":null,"abstract":"<p><p>A thriving agricultural system is the cornerstone of an expanding economy of agricultural countries. Farmers' crop productivity is significantly reduced when they choose the crop without considering environmental factors and soil characteristics. Crop prediction enables farmers to select crops that maximize crop yield and earnings. Accurate crop prediction is mainly concerned with agricultural research, which plays a major role in selecting accurate crops based on environmental factors and soil characteristics. Recently, recommender systems (RS) have gained much attention and are being utilized in various fields such as e-commerce, music, health, text, movies etc. Machine learning techniques can help predict the crop accurately. We proposed an innovative artificial neural network (ANN) based crop prediction system (CPS) to address the farmer's issue. The parameters considered during sensor-based soil data collection for this study are nitrogen, phosphorus, potassium, temperature, humidity, pH, rainfall, electrical conductivity, and soil texture. Python programming language is used to design and validate the proposed system. The accuracy and reliability of the proposed CPS are assessed by using accuracy, precision, recall, and F1-score. We also optimized the proposed CPS by performing a hyperparameter Optimization analysis of applied learning methods. The proposed CPS model accuracy for both real-time collected and state-of-the-art datasets is 99%. The experimental results show that our proposed solution assists farmers in selecting the accurate crop and producing at their best, increasing their profit.</p>","PeriodicalId":54224,"journal":{"name":"PeerJ Computer Science","volume":"10 ","pages":"e2478"},"PeriodicalIF":3.5000,"publicationDate":"2024-11-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11623066/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"PeerJ Computer Science","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.7717/peerj-cs.2478","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/1/1 0:00:00","PubModel":"eCollection","JCR":"Q2","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0

Abstract

A thriving agricultural system is the cornerstone of an expanding economy of agricultural countries. Farmers' crop productivity is significantly reduced when they choose the crop without considering environmental factors and soil characteristics. Crop prediction enables farmers to select crops that maximize crop yield and earnings. Accurate crop prediction is mainly concerned with agricultural research, which plays a major role in selecting accurate crops based on environmental factors and soil characteristics. Recently, recommender systems (RS) have gained much attention and are being utilized in various fields such as e-commerce, music, health, text, movies etc. Machine learning techniques can help predict the crop accurately. We proposed an innovative artificial neural network (ANN) based crop prediction system (CPS) to address the farmer's issue. The parameters considered during sensor-based soil data collection for this study are nitrogen, phosphorus, potassium, temperature, humidity, pH, rainfall, electrical conductivity, and soil texture. Python programming language is used to design and validate the proposed system. The accuracy and reliability of the proposed CPS are assessed by using accuracy, precision, recall, and F1-score. We also optimized the proposed CPS by performing a hyperparameter Optimization analysis of applied learning methods. The proposed CPS model accuracy for both real-time collected and state-of-the-art datasets is 99%. The experimental results show that our proposed solution assists farmers in selecting the accurate crop and producing at their best, increasing their profit.

求助全文
约1分钟内获得全文 求助全文
来源期刊
PeerJ Computer Science
PeerJ Computer Science Computer Science-General Computer Science
CiteScore
6.10
自引率
5.30%
发文量
332
审稿时长
10 weeks
期刊介绍: PeerJ Computer Science is the new open access journal covering all subject areas in computer science, with the backing of a prestigious advisory board and more than 300 academic editors.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信