An automated AI-powered IoT algorithm with data processing and noise elimination for plant monitoring and actuating.

IF 3.5 4区 计算机科学 Q2 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE
PeerJ Computer Science Pub Date : 2024-11-06 eCollection Date: 2024-01-01 DOI:10.7717/peerj-cs.2448
Mohammed A H Ali, Khaja Moiduddin, Yusoff Nukman, Bushroa Abd Razak, Mohamed K Aboudaif, Muthuramalingam Thangaraj
{"title":"An automated AI-powered IoT algorithm with data processing and noise elimination for plant monitoring and actuating.","authors":"Mohammed A H Ali, Khaja Moiduddin, Yusoff Nukman, Bushroa Abd Razak, Mohamed K Aboudaif, Muthuramalingam Thangaraj","doi":"10.7717/peerj-cs.2448","DOIUrl":null,"url":null,"abstract":"<p><p>This article aims to develop a novel Artificial Intelligence-powered Internet of Things (AI-powered IoT) system that can automatically monitor the conditions of the plant (crop) and apply the necessary action without human interaction. The system can remotely send a report on the plant conditions to the farmers through IoT, enabling them for tracking the healthiness of plants. Chili plant has been selected to test the proposed AI-powered IoT monitoring and actuating system as it is so sensitive to the soil moisture, weather changes and can be attacked by several types of diseases. The structure of the proposed system is passed through five main stages, namely, AI-powered IoT system design, prototype fabrication, signal and image processing, noise elimination and proposed system testing. The prototype for monitoring is equipped with multiple sensors, namely, soil moisture, carbon dioxide (CO<sub>2</sub>) detector, temperature, and camera sensors, which are utilized to continuously monitor the conditions of the plant. Several signal and image processing operations have been applied on the acquired sensors data to prepare them for further post-processing stage. In the post processing step, a new AI based noise elimination algorithm has been introduced to eliminate the noise in the images and take the right actions which are performed using actuators such as pumps, fans to make the necessary actions. The experimental results show that the prototype is functioning well with the proposed AI-powered IoT algorithm, where the water pump, exhausted fan and pesticide pump are actuated when the sensors detect a low moisture level, high CO<sub>2</sub> concentration level, and video processing-based pests' detection, respectively. The results also show that the algorithm is capable to detect the pests on the leaves with 75% successful rate.</p>","PeriodicalId":54224,"journal":{"name":"PeerJ Computer Science","volume":"10 ","pages":"e2448"},"PeriodicalIF":3.5000,"publicationDate":"2024-11-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11623071/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"PeerJ Computer Science","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.7717/peerj-cs.2448","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/1/1 0:00:00","PubModel":"eCollection","JCR":"Q2","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0

Abstract

This article aims to develop a novel Artificial Intelligence-powered Internet of Things (AI-powered IoT) system that can automatically monitor the conditions of the plant (crop) and apply the necessary action without human interaction. The system can remotely send a report on the plant conditions to the farmers through IoT, enabling them for tracking the healthiness of plants. Chili plant has been selected to test the proposed AI-powered IoT monitoring and actuating system as it is so sensitive to the soil moisture, weather changes and can be attacked by several types of diseases. The structure of the proposed system is passed through five main stages, namely, AI-powered IoT system design, prototype fabrication, signal and image processing, noise elimination and proposed system testing. The prototype for monitoring is equipped with multiple sensors, namely, soil moisture, carbon dioxide (CO2) detector, temperature, and camera sensors, which are utilized to continuously monitor the conditions of the plant. Several signal and image processing operations have been applied on the acquired sensors data to prepare them for further post-processing stage. In the post processing step, a new AI based noise elimination algorithm has been introduced to eliminate the noise in the images and take the right actions which are performed using actuators such as pumps, fans to make the necessary actions. The experimental results show that the prototype is functioning well with the proposed AI-powered IoT algorithm, where the water pump, exhausted fan and pesticide pump are actuated when the sensors detect a low moisture level, high CO2 concentration level, and video processing-based pests' detection, respectively. The results also show that the algorithm is capable to detect the pests on the leaves with 75% successful rate.

求助全文
约1分钟内获得全文 求助全文
来源期刊
PeerJ Computer Science
PeerJ Computer Science Computer Science-General Computer Science
CiteScore
6.10
自引率
5.30%
发文量
332
审稿时长
10 weeks
期刊介绍: PeerJ Computer Science is the new open access journal covering all subject areas in computer science, with the backing of a prestigious advisory board and more than 300 academic editors.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信