A scalable framework for learning the geometry-dependent solution operators of partial differential equations

IF 12 Q1 COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS
Minglang Yin, Nicolas Charon, Ryan Brody, Lu Lu, Natalia Trayanova, Mauro Maggioni
{"title":"A scalable framework for learning the geometry-dependent solution operators of partial differential equations","authors":"Minglang Yin, Nicolas Charon, Ryan Brody, Lu Lu, Natalia Trayanova, Mauro Maggioni","doi":"10.1038/s43588-024-00732-2","DOIUrl":null,"url":null,"abstract":"Solving partial differential equations (PDEs) using numerical methods is a ubiquitous task in engineering and medicine. However, the computational costs can be prohibitively high when many-query evaluations of PDE solutions on multiple geometries are needed. Here we aim to address this challenge by introducing Diffeomorphic Mapping Operator Learning (DIMON), a generic artificial intelligence framework that learns geometry-dependent solution operators of different types of PDE on a variety of geometries. We present several examples to demonstrate the performance, efficiency and scalability of the framework in learning both static and time-dependent PDEs on parameterized and non-parameterized domains; these include solving the Laplace equations, reaction–diffusion equations and a system of multiscale PDEs that characterize the electrical propagation on thousands of personalized heart digital twins. DIMON can reduce the computational costs of solution approximations on multiple geometries from hours to seconds with substantially less computational resources. This work presents an artificial intelligence framework to learn geometry-dependent solution operators of partial differential equations (PDEs). The framework enables scalable and fast approximations of PDE solutions on a variety of 3D geometries.","PeriodicalId":74246,"journal":{"name":"Nature computational science","volume":"4 12","pages":"928-940"},"PeriodicalIF":12.0000,"publicationDate":"2024-12-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.nature.com/articles/s43588-024-00732-2.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature computational science","FirstCategoryId":"1085","ListUrlMain":"https://www.nature.com/articles/s43588-024-00732-2","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0

Abstract

Solving partial differential equations (PDEs) using numerical methods is a ubiquitous task in engineering and medicine. However, the computational costs can be prohibitively high when many-query evaluations of PDE solutions on multiple geometries are needed. Here we aim to address this challenge by introducing Diffeomorphic Mapping Operator Learning (DIMON), a generic artificial intelligence framework that learns geometry-dependent solution operators of different types of PDE on a variety of geometries. We present several examples to demonstrate the performance, efficiency and scalability of the framework in learning both static and time-dependent PDEs on parameterized and non-parameterized domains; these include solving the Laplace equations, reaction–diffusion equations and a system of multiscale PDEs that characterize the electrical propagation on thousands of personalized heart digital twins. DIMON can reduce the computational costs of solution approximations on multiple geometries from hours to seconds with substantially less computational resources. This work presents an artificial intelligence framework to learn geometry-dependent solution operators of partial differential equations (PDEs). The framework enables scalable and fast approximations of PDE solutions on a variety of 3D geometries.

Abstract Image

一个可扩展的框架,用于学习偏微分方程的几何相关解算子。
用数值方法求解偏微分方程(PDEs)是工程和医学中普遍存在的任务。然而,当需要对多个几何形状的PDE解决方案进行多查询评估时,计算成本可能会高得令人望而却步。在这里,我们的目标是通过引入差分映射算子学习(DIMON)来解决这一挑战,这是一个通用的人工智能框架,可以学习各种几何形状上不同类型PDE的几何相关解算子。我们给出了几个例子来证明该框架在参数化和非参数化域上学习静态和时间相关偏微分方程的性能、效率和可扩展性;其中包括求解拉普拉斯方程、反应扩散方程和一个多尺度偏微分方程系统,该系统表征了数千个个性化心脏数字双胞胎的电传播。DIMON可以用更少的计算资源将多个几何图形的解近似的计算成本从几小时降低到几秒钟。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
11.70
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信