A comparative analysis of variants of machine learning and time series models in predicting women's participation in the labor force.

IF 3.5 4区 计算机科学 Q2 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE
PeerJ Computer Science Pub Date : 2024-11-11 eCollection Date: 2024-01-01 DOI:10.7717/peerj-cs.2430
Rasha Elstohy, Nevein Aneis, Eman Mounir Ali
{"title":"A comparative analysis of variants of machine learning and time series models in predicting women's participation in the labor force.","authors":"Rasha Elstohy, Nevein Aneis, Eman Mounir Ali","doi":"10.7717/peerj-cs.2430","DOIUrl":null,"url":null,"abstract":"<p><p>Labor force participation of Egyptian women has been a chronic economic problem in Egypt. Despite the improvement in the human capital front, whether on the education or health indicators, female labor force participation remains persistently low. This study proposes a hybrid machine-learning model that integrates principal component analysis (PCA) for feature extraction with various machine learning and time-series models to predict women's employment in times of crisis. Various machine learning (ML) algorithms, such as support vector machine (SVM), neural network, K-nearest neighbor (KNN), linear regression, random forest, and AdaBoost, in addition to popular time series algorithms, including autoregressive integrated moving average (ARIMA) and vector autoregressive (VAR) models, have been applied to an actual dataset from the public sector. The manpower dataset considered gender from different regions, ages, and educational levels. The dataset was then trained, tested, and evaluated. For performance validation, forecasting accuracy metrics were constructed using mean squared error (MSE), root mean squared error (RMSE), mean absolute error (MAE), mean absolute percent error (MAPE), R-squared (R2), and cross-validated root mean squared error (CVRMSE). Another Dickey-Fuller test was performed to evaluate and compare the accuracy of the applied models, and the results showed that AdaBoost outperforms the other methods by an accuracy of 100%. Compared to alternative works, our findings demonstrate a comprehensive comparative analysis for predicting women's participation in different regions during an economic crisis.</p>","PeriodicalId":54224,"journal":{"name":"PeerJ Computer Science","volume":"10 ","pages":"e2430"},"PeriodicalIF":3.5000,"publicationDate":"2024-11-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11622832/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"PeerJ Computer Science","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.7717/peerj-cs.2430","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/1/1 0:00:00","PubModel":"eCollection","JCR":"Q2","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0

Abstract

Labor force participation of Egyptian women has been a chronic economic problem in Egypt. Despite the improvement in the human capital front, whether on the education or health indicators, female labor force participation remains persistently low. This study proposes a hybrid machine-learning model that integrates principal component analysis (PCA) for feature extraction with various machine learning and time-series models to predict women's employment in times of crisis. Various machine learning (ML) algorithms, such as support vector machine (SVM), neural network, K-nearest neighbor (KNN), linear regression, random forest, and AdaBoost, in addition to popular time series algorithms, including autoregressive integrated moving average (ARIMA) and vector autoregressive (VAR) models, have been applied to an actual dataset from the public sector. The manpower dataset considered gender from different regions, ages, and educational levels. The dataset was then trained, tested, and evaluated. For performance validation, forecasting accuracy metrics were constructed using mean squared error (MSE), root mean squared error (RMSE), mean absolute error (MAE), mean absolute percent error (MAPE), R-squared (R2), and cross-validated root mean squared error (CVRMSE). Another Dickey-Fuller test was performed to evaluate and compare the accuracy of the applied models, and the results showed that AdaBoost outperforms the other methods by an accuracy of 100%. Compared to alternative works, our findings demonstrate a comprehensive comparative analysis for predicting women's participation in different regions during an economic crisis.

求助全文
约1分钟内获得全文 求助全文
来源期刊
PeerJ Computer Science
PeerJ Computer Science Computer Science-General Computer Science
CiteScore
6.10
自引率
5.30%
发文量
332
审稿时长
10 weeks
期刊介绍: PeerJ Computer Science is the new open access journal covering all subject areas in computer science, with the backing of a prestigious advisory board and more than 300 academic editors.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信