Enhancing task execution: a dual-layer approach with multi-queue adaptive priority scheduling.

IF 3.5 4区 计算机科学 Q2 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE
PeerJ Computer Science Pub Date : 2024-12-03 eCollection Date: 2024-01-01 DOI:10.7717/peerj-cs.2531
Mansoor Iqbal, Muhammad Umar Shafiq, Shouzab Khan, Obaidullah, Saad Alahmari, Zahid Ullah
{"title":"Enhancing task execution: a dual-layer approach with multi-queue adaptive priority scheduling.","authors":"Mansoor Iqbal, Muhammad Umar Shafiq, Shouzab Khan, Obaidullah, Saad Alahmari, Zahid Ullah","doi":"10.7717/peerj-cs.2531","DOIUrl":null,"url":null,"abstract":"<p><p>Efficient task execution is critical to optimize the usage of computing resources in process scheduling. Various task scheduling algorithms ensure optimized and efficient use of computing resources. This article introduces an innovative dual-layer scheduling algorithm, Multi-Queue Adaptive Priority Scheduling (MQAPS), for task execution. MQAPS features a dual-layer hierarchy with a ready queue (RQ) and a secondary queue (SQ). New tasks enter the RQ, where they are prioritized, while the SQ contains tasks that have already used computing resources at least once, with priorities below a predefined threshold. The algorithm dynamically calculates the time slice based on process priorities to ensure efficient CPU utilization. In the RQ, the task's priority level defines its prioritization, which ensures that important jobs are completed on time compared to other conventional methods where priority is fixed or no priority parameter is defined, resulting in starvation in low-priority jobs. The simulation results show that MQAPS better utilizes CPU resources and time than traditional round-robin (RR) and multi-level scheduling. The MQAPS showcases a promising scheduling technique ensuring a balanced framework for dynamic adjustment of time quantum and priority. The MQAPS algorithm demonstrated optimization, fairness, and efficiency in job scheduling.</p>","PeriodicalId":54224,"journal":{"name":"PeerJ Computer Science","volume":"10 ","pages":"e2531"},"PeriodicalIF":3.5000,"publicationDate":"2024-12-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11623127/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"PeerJ Computer Science","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.7717/peerj-cs.2531","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/1/1 0:00:00","PubModel":"eCollection","JCR":"Q2","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0

Abstract

Efficient task execution is critical to optimize the usage of computing resources in process scheduling. Various task scheduling algorithms ensure optimized and efficient use of computing resources. This article introduces an innovative dual-layer scheduling algorithm, Multi-Queue Adaptive Priority Scheduling (MQAPS), for task execution. MQAPS features a dual-layer hierarchy with a ready queue (RQ) and a secondary queue (SQ). New tasks enter the RQ, where they are prioritized, while the SQ contains tasks that have already used computing resources at least once, with priorities below a predefined threshold. The algorithm dynamically calculates the time slice based on process priorities to ensure efficient CPU utilization. In the RQ, the task's priority level defines its prioritization, which ensures that important jobs are completed on time compared to other conventional methods where priority is fixed or no priority parameter is defined, resulting in starvation in low-priority jobs. The simulation results show that MQAPS better utilizes CPU resources and time than traditional round-robin (RR) and multi-level scheduling. The MQAPS showcases a promising scheduling technique ensuring a balanced framework for dynamic adjustment of time quantum and priority. The MQAPS algorithm demonstrated optimization, fairness, and efficiency in job scheduling.

求助全文
约1分钟内获得全文 求助全文
来源期刊
PeerJ Computer Science
PeerJ Computer Science Computer Science-General Computer Science
CiteScore
6.10
自引率
5.30%
发文量
332
审稿时长
10 weeks
期刊介绍: PeerJ Computer Science is the new open access journal covering all subject areas in computer science, with the backing of a prestigious advisory board and more than 300 academic editors.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信