A big data analysis algorithm for massive sensor medical images.

IF 3.5 4区 计算机科学 Q2 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE
PeerJ Computer Science Pub Date : 2024-11-26 eCollection Date: 2024-01-01 DOI:10.7717/peerj-cs.2464
Sarah A Alzakari, Nuha Alruwais, Shaymaa Sorour, Shouki A Ebad, Asma Abbas Hassan Elnour, Ahmed Sayed
{"title":"A big data analysis algorithm for massive sensor medical images.","authors":"Sarah A Alzakari, Nuha Alruwais, Shaymaa Sorour, Shouki A Ebad, Asma Abbas Hassan Elnour, Ahmed Sayed","doi":"10.7717/peerj-cs.2464","DOIUrl":null,"url":null,"abstract":"<p><p>Big data analytics for clinical decision-making has been proposed for various clinical sectors because clinical decisions are more evidence-based and promising. Healthcare data is so vast and readily available that big data analytics has completely transformed this sector and opened up many new prospects. The smart sensor-based big data analysis recommendation system has significant privacy and security concerns when using sensor medical images for suggestions and monitoring. The danger of security breaches and unauthorized access, which might lead to identity theft and privacy violations, increases when sending and storing sensitive medical data on the cloud. Our effort will improve patient care and well-being by creating an anomaly detection system based on machine learning specifically for medical images and providing timely treatments and notifications. Current anomaly detection methods in healthcare systems, such as artificial intelligence and big data analytics-intracerebral hemorrhage (AIBDA-ICH) and parallel conformer neural network (PCNN), face several challenges, including high resource consumption, inefficient feature selection, and an inability to handle temporal data effectively for real-time monitoring. Techniques like support vector machines (SVM) and the hidden Markov model (HMM) struggle with computational overhead and scalability in large datasets, limiting their performance in critical healthcare applications. Additionally, existing methods often fail to provide accurate anomaly detection with low latency, making them unsuitable for time-sensitive environments. We infer the extraction, feature selection, attack detection, and data collection and processing procedures to anticipate anomaly inpatient data. We transfer the data, take care of missing values, and sanitize it using the pre-processing mechanism. We employed the recursive feature elimination (RFE) and dynamic principal component analysis (DPCA) algorithms for feature selection and extraction. In addition, we applied the Auto-encoded genetic recurrent neural network (AGRNN) approach to identify abnormalities. Data arrival rate, resource consumption, propagation delay, transaction epoch, true positive rate, false alarm rate, and root mean square error (RMSE) are some metrics used to evaluate the proposed task.</p>","PeriodicalId":54224,"journal":{"name":"PeerJ Computer Science","volume":"10 ","pages":"e2464"},"PeriodicalIF":3.5000,"publicationDate":"2024-11-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11623192/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"PeerJ Computer Science","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.7717/peerj-cs.2464","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/1/1 0:00:00","PubModel":"eCollection","JCR":"Q2","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0

Abstract

Big data analytics for clinical decision-making has been proposed for various clinical sectors because clinical decisions are more evidence-based and promising. Healthcare data is so vast and readily available that big data analytics has completely transformed this sector and opened up many new prospects. The smart sensor-based big data analysis recommendation system has significant privacy and security concerns when using sensor medical images for suggestions and monitoring. The danger of security breaches and unauthorized access, which might lead to identity theft and privacy violations, increases when sending and storing sensitive medical data on the cloud. Our effort will improve patient care and well-being by creating an anomaly detection system based on machine learning specifically for medical images and providing timely treatments and notifications. Current anomaly detection methods in healthcare systems, such as artificial intelligence and big data analytics-intracerebral hemorrhage (AIBDA-ICH) and parallel conformer neural network (PCNN), face several challenges, including high resource consumption, inefficient feature selection, and an inability to handle temporal data effectively for real-time monitoring. Techniques like support vector machines (SVM) and the hidden Markov model (HMM) struggle with computational overhead and scalability in large datasets, limiting their performance in critical healthcare applications. Additionally, existing methods often fail to provide accurate anomaly detection with low latency, making them unsuitable for time-sensitive environments. We infer the extraction, feature selection, attack detection, and data collection and processing procedures to anticipate anomaly inpatient data. We transfer the data, take care of missing values, and sanitize it using the pre-processing mechanism. We employed the recursive feature elimination (RFE) and dynamic principal component analysis (DPCA) algorithms for feature selection and extraction. In addition, we applied the Auto-encoded genetic recurrent neural network (AGRNN) approach to identify abnormalities. Data arrival rate, resource consumption, propagation delay, transaction epoch, true positive rate, false alarm rate, and root mean square error (RMSE) are some metrics used to evaluate the proposed task.

求助全文
约1分钟内获得全文 求助全文
来源期刊
PeerJ Computer Science
PeerJ Computer Science Computer Science-General Computer Science
CiteScore
6.10
自引率
5.30%
发文量
332
审稿时长
10 weeks
期刊介绍: PeerJ Computer Science is the new open access journal covering all subject areas in computer science, with the backing of a prestigious advisory board and more than 300 academic editors.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信