Enhancing river and lake wastewater reuse recommendation in industrial and agricultural using AquaMeld techniques.

IF 3.5 4区 计算机科学 Q2 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE
PeerJ Computer Science Pub Date : 2024-11-29 eCollection Date: 2024-01-01 DOI:10.7717/peerj-cs.2488
J Priskilla Angel Rani, C Yesubai Rubavathi
{"title":"Enhancing river and lake wastewater reuse recommendation in industrial and agricultural using AquaMeld techniques.","authors":"J Priskilla Angel Rani, C Yesubai Rubavathi","doi":"10.7717/peerj-cs.2488","DOIUrl":null,"url":null,"abstract":"<p><p>AquaMeld, a novel method for reusing agricultural and industrial wastewater in rivers and lakes, is presented in this article. Water shortage and environmental sustainability are major problems, making wastewater treatment a responsibility. Customizing solutions for varied stakeholders and environmental conditions using standard methods is challenging. This study uses AquaMeld and Multi-Layer Perceptron with Recurrent Neural Network (MLP-RNN) algorithms to create a complete recommendation system. AquaMeld uses MLP-RNN to evaluate complicated wastewater, environmental, and pH data. AquaMeld analyses real-time data to recommend wastewater reuse systems. This design can adapt to changing scenarios and user demands, helping ideas grow. This technique does not assume data follows a distribution, which may reduce the model's predictive effectiveness. Instead, it forecasts aquatic quality using RNN-MLP. The main motivation is combining the two models into the MLP-RNN to improve prediction accuracy. RNN handles sequential data better, whereas MLP handles complex nonlinear relationships better. MLP-RNN projections are the most accurate. This shows how effectively the model handles complicated, time- and place-dependent water quality data. If other environmental data analysis projects have similar limits, MLP-RNN may work. AquaMeld has several benefits over traditional methods. The MLP-RNN architecture uses deep learning to assess complicated aquatic ecosystem interactions, enabling more proactive and accurate decision-making is the most accurate with a 98% success rate. AquaMeld is flexible and eco-friendly since it may be used for many agricultural and industrial operations. AquaMeld helps stakeholders make better, faster water resource management choices. Models and field studies in agricultural and industrial contexts examine AquaMeld's efficacy. This strategy enhances environmental sustainability, resource exploitation, and wastewater reuse over previous ones. According to the results, AquaMeld might transform wastewater treatment. River and lake-dependent companies and agriculture may now use water resource management methods that are less destructive.</p>","PeriodicalId":54224,"journal":{"name":"PeerJ Computer Science","volume":"10 ","pages":"e2488"},"PeriodicalIF":3.5000,"publicationDate":"2024-11-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11622876/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"PeerJ Computer Science","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.7717/peerj-cs.2488","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/1/1 0:00:00","PubModel":"eCollection","JCR":"Q2","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0

Abstract

AquaMeld, a novel method for reusing agricultural and industrial wastewater in rivers and lakes, is presented in this article. Water shortage and environmental sustainability are major problems, making wastewater treatment a responsibility. Customizing solutions for varied stakeholders and environmental conditions using standard methods is challenging. This study uses AquaMeld and Multi-Layer Perceptron with Recurrent Neural Network (MLP-RNN) algorithms to create a complete recommendation system. AquaMeld uses MLP-RNN to evaluate complicated wastewater, environmental, and pH data. AquaMeld analyses real-time data to recommend wastewater reuse systems. This design can adapt to changing scenarios and user demands, helping ideas grow. This technique does not assume data follows a distribution, which may reduce the model's predictive effectiveness. Instead, it forecasts aquatic quality using RNN-MLP. The main motivation is combining the two models into the MLP-RNN to improve prediction accuracy. RNN handles sequential data better, whereas MLP handles complex nonlinear relationships better. MLP-RNN projections are the most accurate. This shows how effectively the model handles complicated, time- and place-dependent water quality data. If other environmental data analysis projects have similar limits, MLP-RNN may work. AquaMeld has several benefits over traditional methods. The MLP-RNN architecture uses deep learning to assess complicated aquatic ecosystem interactions, enabling more proactive and accurate decision-making is the most accurate with a 98% success rate. AquaMeld is flexible and eco-friendly since it may be used for many agricultural and industrial operations. AquaMeld helps stakeholders make better, faster water resource management choices. Models and field studies in agricultural and industrial contexts examine AquaMeld's efficacy. This strategy enhances environmental sustainability, resource exploitation, and wastewater reuse over previous ones. According to the results, AquaMeld might transform wastewater treatment. River and lake-dependent companies and agriculture may now use water resource management methods that are less destructive.

求助全文
约1分钟内获得全文 求助全文
来源期刊
PeerJ Computer Science
PeerJ Computer Science Computer Science-General Computer Science
CiteScore
6.10
自引率
5.30%
发文量
332
审稿时长
10 weeks
期刊介绍: PeerJ Computer Science is the new open access journal covering all subject areas in computer science, with the backing of a prestigious advisory board and more than 300 academic editors.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信