Accurately assessing congenital heart disease using artificial intelligence.

IF 3.5 4区 计算机科学 Q2 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE
PeerJ Computer Science Pub Date : 2024-11-29 eCollection Date: 2024-01-01 DOI:10.7717/peerj-cs.2535
Khalil Khan, Farhan Ullah, Ikram Syed, Hashim Ali
{"title":"Accurately assessing congenital heart disease using artificial intelligence.","authors":"Khalil Khan, Farhan Ullah, Ikram Syed, Hashim Ali","doi":"10.7717/peerj-cs.2535","DOIUrl":null,"url":null,"abstract":"<p><p>Congenital heart disease (CHD) remains a significant global health challenge, particularly contributing to newborn mortality, with the highest rates observed in middle- and low-income countries due to limited healthcare resources. Machine learning (ML) presents a promising solution by developing predictive models that more accurately assess the risk of mortality associated with CHD. These ML-based models can help healthcare professionals identify high-risk infants and ensure timely and appropriate care. In addition, ML algorithms excel at detecting and analyzing complex patterns that can be overlooked by human clinicians, thereby enhancing diagnostic accuracy. Despite notable advancements, ongoing research continues to explore the full potential of ML in the identification of CHD. The proposed article provides a comprehensive analysis of the ML methods for the diagnosis of CHD in the last eight years. The study also describes different data sets available for CHD research, discussing their characteristics, collection methods, and relevance to ML applications. In addition, the article also evaluates the strengths and weaknesses of existing algorithms, offering a critical review of their performance and limitations. Finally, the article proposes several promising directions for future research, with the aim of further improving the efficacy of ML in the diagnosis and treatment of CHD.</p>","PeriodicalId":54224,"journal":{"name":"PeerJ Computer Science","volume":"10 ","pages":"e2535"},"PeriodicalIF":3.5000,"publicationDate":"2024-11-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11623015/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"PeerJ Computer Science","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.7717/peerj-cs.2535","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/1/1 0:00:00","PubModel":"eCollection","JCR":"Q2","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0

Abstract

Congenital heart disease (CHD) remains a significant global health challenge, particularly contributing to newborn mortality, with the highest rates observed in middle- and low-income countries due to limited healthcare resources. Machine learning (ML) presents a promising solution by developing predictive models that more accurately assess the risk of mortality associated with CHD. These ML-based models can help healthcare professionals identify high-risk infants and ensure timely and appropriate care. In addition, ML algorithms excel at detecting and analyzing complex patterns that can be overlooked by human clinicians, thereby enhancing diagnostic accuracy. Despite notable advancements, ongoing research continues to explore the full potential of ML in the identification of CHD. The proposed article provides a comprehensive analysis of the ML methods for the diagnosis of CHD in the last eight years. The study also describes different data sets available for CHD research, discussing their characteristics, collection methods, and relevance to ML applications. In addition, the article also evaluates the strengths and weaknesses of existing algorithms, offering a critical review of their performance and limitations. Finally, the article proposes several promising directions for future research, with the aim of further improving the efficacy of ML in the diagnosis and treatment of CHD.

求助全文
约1分钟内获得全文 求助全文
来源期刊
PeerJ Computer Science
PeerJ Computer Science Computer Science-General Computer Science
CiteScore
6.10
自引率
5.30%
发文量
332
审稿时长
10 weeks
期刊介绍: PeerJ Computer Science is the new open access journal covering all subject areas in computer science, with the backing of a prestigious advisory board and more than 300 academic editors.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信