Toward explainable deep learning in healthcare through transition matrix and user-friendly features.

IF 3 Q2 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE
Frontiers in Artificial Intelligence Pub Date : 2024-11-25 eCollection Date: 2024-01-01 DOI:10.3389/frai.2024.1482141
Oleksander Barmak, Iurii Krak, Sergiy Yakovlev, Eduard Manziuk, Pavlo Radiuk, Vladislav Kuznetsov
{"title":"Toward explainable deep learning in healthcare through transition matrix and user-friendly features.","authors":"Oleksander Barmak, Iurii Krak, Sergiy Yakovlev, Eduard Manziuk, Pavlo Radiuk, Vladislav Kuznetsov","doi":"10.3389/frai.2024.1482141","DOIUrl":null,"url":null,"abstract":"<p><p>Modern artificial intelligence (AI) solutions often face challenges due to the \"black box\" nature of deep learning (DL) models, which limits their transparency and trustworthiness in critical medical applications. In this study, we propose and evaluate a scalable approach based on a transition matrix to enhance the interpretability of DL models in medical signal and image processing by translating complex model decisions into user-friendly and justifiable features for healthcare professionals. The criteria for choosing interpretable features were clearly defined, incorporating clinical guidelines and expert rules to align model outputs with established medical standards. The proposed approach was tested on two medical datasets: electrocardiography (ECG) for arrhythmia detection and magnetic resonance imaging (MRI) for heart disease classification. The performance of the DL models was compared with expert annotations using Cohen's Kappa coefficient to assess agreement, achieving coefficients of 0.89 for the ECG dataset and 0.80 for the MRI dataset. These results demonstrate strong agreement, underscoring the reliability of the approach in providing accurate, understandable, and justifiable explanations of DL model decisions. The scalability of the approach suggests its potential applicability across various medical domains, enhancing the generalizability and utility of DL models in healthcare while addressing practical challenges and ethical considerations.</p>","PeriodicalId":33315,"journal":{"name":"Frontiers in Artificial Intelligence","volume":"7 ","pages":"1482141"},"PeriodicalIF":3.0000,"publicationDate":"2024-11-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11625760/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Frontiers in Artificial Intelligence","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3389/frai.2024.1482141","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/1/1 0:00:00","PubModel":"eCollection","JCR":"Q2","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0

Abstract

Modern artificial intelligence (AI) solutions often face challenges due to the "black box" nature of deep learning (DL) models, which limits their transparency and trustworthiness in critical medical applications. In this study, we propose and evaluate a scalable approach based on a transition matrix to enhance the interpretability of DL models in medical signal and image processing by translating complex model decisions into user-friendly and justifiable features for healthcare professionals. The criteria for choosing interpretable features were clearly defined, incorporating clinical guidelines and expert rules to align model outputs with established medical standards. The proposed approach was tested on two medical datasets: electrocardiography (ECG) for arrhythmia detection and magnetic resonance imaging (MRI) for heart disease classification. The performance of the DL models was compared with expert annotations using Cohen's Kappa coefficient to assess agreement, achieving coefficients of 0.89 for the ECG dataset and 0.80 for the MRI dataset. These results demonstrate strong agreement, underscoring the reliability of the approach in providing accurate, understandable, and justifiable explanations of DL model decisions. The scalability of the approach suggests its potential applicability across various medical domains, enhancing the generalizability and utility of DL models in healthcare while addressing practical challenges and ethical considerations.

求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
6.10
自引率
2.50%
发文量
272
审稿时长
13 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信