Hemodynamic effects of bifurcation and stenosis geometry on carotid arteries with different degrees of stenosis.

IF 2.3 4区 医学 Q3 BIOPHYSICS
Yuxin Guo, Jianbao Yang, Junzhen Xue, Jingxi Yang, Siyu Liu, XueLian Zhang, Yixin Yao, Anlong Quan, Yang Zhang
{"title":"Hemodynamic effects of bifurcation and stenosis geometry on carotid arteries with different degrees of stenosis.","authors":"Yuxin Guo, Jianbao Yang, Junzhen Xue, Jingxi Yang, Siyu Liu, XueLian Zhang, Yixin Yao, Anlong Quan, Yang Zhang","doi":"10.1088/1361-6579/ad9c13","DOIUrl":null,"url":null,"abstract":"<p><p><i>Objective.</i>Carotid artery stenosis (CAS) is a key factor in pathological conditions, such as thrombosis, which is closely linked to hemodynamic parameters. Existing research often focuses on analyzing the influence of geometric characteristics at the stenosis site, making it difficult to predict the effects of overall vascular geometry on hemodynamic parameters. The objective of this study is to comprehensively examine the influence of geometric morphology at different degrees of CAS and at bifurcation sites on hemodynamic parameters.<i>Approach.</i>A three-dimensional model is established using computed tomography angiography images, and eight geometric parameters of each patient are measured by MIMICS. Then, computational fluid dynamics is utilized to investigate 60 patients with varying degrees of stenosis (10%-95%). Time and grid tests are conducted to optimize settings, and results are validated through comparison with reference calculations. Subsequently, correlation analysis using SPSS is performed to examine the relationship between the eight geometric parameters and four hemodynamic parameters. In MATLAB, prediction models for the four hemodynamic parameters are developed using back propagation neural networks (BPNN) and multiple linear regression.<i>Main results.</i>The BPNN model significantly outperforms the multiple linear regression model, reducing mean absolute error, mean squared error, and root mean squared error by 91.7%, 93.9%, and 75.5%, respectively, and increasing<i>R</i><sup>2</sup>from 19.0% to 88.0%. This greatly improves fitting accuracy and reduces errors. This study elucidates the correlation and patterns of geometric parameters of vascular stenosis and bifurcation in evaluating hemodynamic parameters of CAS.<i>Significance.</i>This study opens up new avenues for improving the diagnosis, treatment, and clinical management strategies of CAS.</p>","PeriodicalId":20047,"journal":{"name":"Physiological measurement","volume":" ","pages":""},"PeriodicalIF":2.3000,"publicationDate":"2024-12-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physiological measurement","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1088/1361-6579/ad9c13","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOPHYSICS","Score":null,"Total":0}
引用次数: 0

Abstract

Objective.Carotid artery stenosis (CAS) is a key factor in pathological conditions, such as thrombosis, which is closely linked to hemodynamic parameters. Existing research often focuses on analyzing the influence of geometric characteristics at the stenosis site, making it difficult to predict the effects of overall vascular geometry on hemodynamic parameters. The objective of this study is to comprehensively examine the influence of geometric morphology at different degrees of CAS and at bifurcation sites on hemodynamic parameters.Approach.A three-dimensional model is established using computed tomography angiography images, and eight geometric parameters of each patient are measured by MIMICS. Then, computational fluid dynamics is utilized to investigate 60 patients with varying degrees of stenosis (10%-95%). Time and grid tests are conducted to optimize settings, and results are validated through comparison with reference calculations. Subsequently, correlation analysis using SPSS is performed to examine the relationship between the eight geometric parameters and four hemodynamic parameters. In MATLAB, prediction models for the four hemodynamic parameters are developed using back propagation neural networks (BPNN) and multiple linear regression.Main results.The BPNN model significantly outperforms the multiple linear regression model, reducing mean absolute error, mean squared error, and root mean squared error by 91.7%, 93.9%, and 75.5%, respectively, and increasingR2from 19.0% to 88.0%. This greatly improves fitting accuracy and reduces errors. This study elucidates the correlation and patterns of geometric parameters of vascular stenosis and bifurcation in evaluating hemodynamic parameters of CAS.Significance.This study opens up new avenues for improving the diagnosis, treatment, and clinical management strategies of CAS.

不同狭窄程度颈动脉分岔及狭窄几何形状对血流动力学的影响。
目的:颈动脉狭窄(CAS)是发生血栓形成等病理状况的关键因素,与血流动力学参数密切相关。现有研究往往侧重于分析狭窄部位几何特征的影响,难以预测整体血管几何形状对血流动力学参数的影响。本研究旨在全面探讨颈动脉不同狭窄程度及分叉部位的几何形态对血流动力学参数的影响。方法:利用计算机断层血管造影(CTA)图像建立三维模型,利用MIMICS测量每位患者的8个几何参数。然后利用计算流体力学(CFD)对60例不同程度狭窄(10% ~ 95%)的患者进行调查。通过时间和网格测试对设置进行优化,并与参考计算结果进行对比验证。随后,使用SPSS进行相关分析,检验8个几何参数与4个血流动力学参数之间的关系。在MATLAB中,利用反向传播神经网络(BPNN)和多元线性回归建立了四个血流动力学参数的预测模型。主要结果:BPNN模型显著优于多元线性回归模型,MAE、MSE和RMSE分别降低91.7%、93.9%和75.5%,R²从19.0%提高到88.0%。这大大提高了拟合精度,减少了误差。本研究阐明了血管狭窄和分叉几何参数在评价CAS血流动力学参数中的相关性和模式。意义:本研究为改进CAS的诊断、治疗和临床管理策略开辟了新的途径。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Physiological measurement
Physiological measurement 生物-工程:生物医学
CiteScore
5.50
自引率
9.40%
发文量
124
审稿时长
3 months
期刊介绍: Physiological Measurement publishes papers about the quantitative assessment and visualization of physiological function in clinical research and practice, with an emphasis on the development of new methods of measurement and their validation. Papers are published on topics including: applied physiology in illness and health electrical bioimpedance, optical and acoustic measurement techniques advanced methods of time series and other data analysis biomedical and clinical engineering in-patient and ambulatory monitoring point-of-care technologies novel clinical measurements of cardiovascular, neurological, and musculoskeletal systems. measurements in molecular, cellular and organ physiology and electrophysiology physiological modeling and simulation novel biomedical sensors, instruments, devices and systems measurement standards and guidelines.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信