Decreased voluntary alcohol intake and ventral striatal epigenetic and transcriptional remodeling in male Acss2 KO mice.

IF 4.6 2区 医学 Q1 NEUROSCIENCES
Neuropharmacology Pub Date : 2025-03-01 Epub Date: 2024-12-09 DOI:10.1016/j.neuropharm.2024.110258
Gabor Egervari, Greg Donahue, Natalia A Quijano Cardé, Desi C Alexander, Connor Hogan, Jessica K Shaw, Erica M Periandri, Vanessa Fleites, Mariella De Biasi, Shelley L Berger
{"title":"Decreased voluntary alcohol intake and ventral striatal epigenetic and transcriptional remodeling in male Acss2 KO mice.","authors":"Gabor Egervari, Greg Donahue, Natalia A Quijano Cardé, Desi C Alexander, Connor Hogan, Jessica K Shaw, Erica M Periandri, Vanessa Fleites, Mariella De Biasi, Shelley L Berger","doi":"10.1016/j.neuropharm.2024.110258","DOIUrl":null,"url":null,"abstract":"<p><p>Metabolic-epigenetic interactions are emerging as key pathways in regulating alcohol-related transcriptional changes in the brain. Recently, we have shown that this is mediated by the metabolic enzyme Acetyl-CoA synthetase 2 (Acss2), which is nuclear and chromatin-bound in neurons. Mice lacking ACSS2 fail to deposit alcohol-derived acetate onto histones in the brain and show no conditioned place preference for ethanol reward. Here, we further explored the role of this pathway during voluntary alcohol intake. We found that Acss2 KO mice consume significantly less alcohol in a model of binge drinking, an effect primarily driven by males. Genome-wide transcriptional profiling of 7 key brain regions implicated in alcohol and drug use revealed that, following drinking, Acss2 KO mice exhibit blunted gene expression in the ventral striatum. Similarly to the behavioral differences, transcriptional dysregulation was more pronounced in male mice. Further, we found that the gene expression changes were associated with depletion of ventral striatal histone acetylation (H3K27ac) in Acss2 KO mice compared to WT. Taken together, our data suggest that ACSS2 plays an important role in orchestrating ventral striatal epigenetic and transcriptional changes during voluntary alcohol drinking, especially in males. Consequently, targeting this pathway could be a promising new therapeutic avenue.</p>","PeriodicalId":19139,"journal":{"name":"Neuropharmacology","volume":" ","pages":"110258"},"PeriodicalIF":4.6000,"publicationDate":"2025-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Neuropharmacology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1016/j.neuropharm.2024.110258","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/12/9 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"NEUROSCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

Metabolic-epigenetic interactions are emerging as key pathways in regulating alcohol-related transcriptional changes in the brain. Recently, we have shown that this is mediated by the metabolic enzyme Acetyl-CoA synthetase 2 (Acss2), which is nuclear and chromatin-bound in neurons. Mice lacking ACSS2 fail to deposit alcohol-derived acetate onto histones in the brain and show no conditioned place preference for ethanol reward. Here, we further explored the role of this pathway during voluntary alcohol intake. We found that Acss2 KO mice consume significantly less alcohol in a model of binge drinking, an effect primarily driven by males. Genome-wide transcriptional profiling of 7 key brain regions implicated in alcohol and drug use revealed that, following drinking, Acss2 KO mice exhibit blunted gene expression in the ventral striatum. Similarly to the behavioral differences, transcriptional dysregulation was more pronounced in male mice. Further, we found that the gene expression changes were associated with depletion of ventral striatal histone acetylation (H3K27ac) in Acss2 KO mice compared to WT. Taken together, our data suggest that ACSS2 plays an important role in orchestrating ventral striatal epigenetic and transcriptional changes during voluntary alcohol drinking, especially in males. Consequently, targeting this pathway could be a promising new therapeutic avenue.

求助全文
约1分钟内获得全文 求助全文
来源期刊
Neuropharmacology
Neuropharmacology 医学-神经科学
CiteScore
10.00
自引率
4.30%
发文量
288
审稿时长
45 days
期刊介绍: Neuropharmacology publishes high quality, original research and review articles within the discipline of neuroscience, especially articles with a neuropharmacological component. However, papers within any area of neuroscience will be considered. The journal does not usually accept clinical research, although preclinical neuropharmacological studies in humans may be considered. The journal only considers submissions in which the chemical structures and compositions of experimental agents are readily available in the literature or disclosed by the authors in the submitted manuscript. Only in exceptional circumstances will natural products be considered, and then only if the preparation is well defined by scientific means. Neuropharmacology publishes articles of any length (original research and reviews).
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信