Evaluating Blood-Brain Barrier Permeability, Cytotoxicity, and Activity of Potential Acetylcholinesterase Inhibitors: In Vitro and In Silico Study.

IF 2.9 4区 医学 Q2 PHARMACOLOGY & PHARMACY
L M Maboko, A Theron, J-L Panayides, W Cordier, D Fisher, V Steenkamp
{"title":"Evaluating Blood-Brain Barrier Permeability, Cytotoxicity, and Activity of Potential Acetylcholinesterase Inhibitors: In Vitro and In Silico Study.","authors":"L M Maboko, A Theron, J-L Panayides, W Cordier, D Fisher, V Steenkamp","doi":"10.1002/prp2.70043","DOIUrl":null,"url":null,"abstract":"<p><p>Acetylcholinesterase inhibitors (AChEIs) remain the first-line treatment for Alzheimer's disease. However, these drugs are largely symptomatic and often associated with adverse effects. This study aimed to evaluate novel pharmacophores for their in vitro AChEI activity, blood-brain barrier (BBB) permeability, and cytotoxic potential, hypothesizing that a combination of AChEIs could enhance symptom management while minimizing toxicity. A library of 1453 synthetic pharmacophores was assessed using in vitro and in silico methods to determine their feasibility as an inhibitor of the AChE enzyme. An in-house miniaturized Ellman's assay determined acellular AChEI activities, while pharmacokinetic properties were evaluated using the SwissADME web tool. The combinational effects of in silico BBB-permeable pharmacophores and donepezil were examined using a checkerboard AChEI assay. Cytotoxicity of active compounds and their synergistic combinations was assessed in SH-SY5Y neuroblastoma and bEnd.5 cells using the sulforhodamine B assay. Cellular AChEI activity of active in silico BBB-permeable predicted compounds was determined using an SH-SY5Y AChE-based assay. An in vitro BBB model was used to assess the effect of compounds on the integrity of the bEnd.5 monolayer. Out of the screened compounds, 12 demonstrated 60% AChEI activity at 5 μM, with compound A51 showing the lowest IC<sub>50</sub> (0.20 μM). Five compounds were identified as BBB-permeable, with the donepezil-C53 combination at ¼IC<sub>50</sub> exhibiting the strongest synergy (CI = 0.82). Compounds A136 and C129, either alone or with donepezil, showed cytotoxicity. Notably, compound C53, both alone and in combination with donepezil, demonstrated high AChEI activity and promising BBB permeability, warranting further investigation.</p>","PeriodicalId":19948,"journal":{"name":"Pharmacology Research & Perspectives","volume":"12 6","pages":"e70043"},"PeriodicalIF":2.9000,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Pharmacology Research & Perspectives","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1002/prp2.70043","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHARMACOLOGY & PHARMACY","Score":null,"Total":0}
引用次数: 0

Abstract

Acetylcholinesterase inhibitors (AChEIs) remain the first-line treatment for Alzheimer's disease. However, these drugs are largely symptomatic and often associated with adverse effects. This study aimed to evaluate novel pharmacophores for their in vitro AChEI activity, blood-brain barrier (BBB) permeability, and cytotoxic potential, hypothesizing that a combination of AChEIs could enhance symptom management while minimizing toxicity. A library of 1453 synthetic pharmacophores was assessed using in vitro and in silico methods to determine their feasibility as an inhibitor of the AChE enzyme. An in-house miniaturized Ellman's assay determined acellular AChEI activities, while pharmacokinetic properties were evaluated using the SwissADME web tool. The combinational effects of in silico BBB-permeable pharmacophores and donepezil were examined using a checkerboard AChEI assay. Cytotoxicity of active compounds and their synergistic combinations was assessed in SH-SY5Y neuroblastoma and bEnd.5 cells using the sulforhodamine B assay. Cellular AChEI activity of active in silico BBB-permeable predicted compounds was determined using an SH-SY5Y AChE-based assay. An in vitro BBB model was used to assess the effect of compounds on the integrity of the bEnd.5 monolayer. Out of the screened compounds, 12 demonstrated 60% AChEI activity at 5 μM, with compound A51 showing the lowest IC50 (0.20 μM). Five compounds were identified as BBB-permeable, with the donepezil-C53 combination at ¼IC50 exhibiting the strongest synergy (CI = 0.82). Compounds A136 and C129, either alone or with donepezil, showed cytotoxicity. Notably, compound C53, both alone and in combination with donepezil, demonstrated high AChEI activity and promising BBB permeability, warranting further investigation.

求助全文
约1分钟内获得全文 求助全文
来源期刊
Pharmacology Research & Perspectives
Pharmacology Research & Perspectives Pharmacology, Toxicology and Pharmaceutics-General Pharmacology, Toxicology and Pharmaceutics
CiteScore
5.30
自引率
3.80%
发文量
120
审稿时长
20 weeks
期刊介绍: PR&P is jointly published by the American Society for Pharmacology and Experimental Therapeutics (ASPET), the British Pharmacological Society (BPS), and Wiley. PR&P is a bi-monthly open access journal that publishes a range of article types, including: target validation (preclinical papers that show a hypothesis is incorrect or papers on drugs that have failed in early clinical development); drug discovery reviews (strategy, hypotheses, and data resulting in a successful therapeutic drug); frontiers in translational medicine (drug and target validation for an unmet therapeutic need); pharmacological hypotheses (reviews that are oriented to inform a novel hypothesis); and replication studies (work that refutes key findings [failed replication] and work that validates key findings). PR&P publishes papers submitted directly to the journal and those referred from the journals of ASPET and the BPS
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信