Digital Technologies Tracking Active and Passive Data Collection in Depressive Disorders: Lessons Learned From a Case Series.

IF 1.3 4区 医学 Q3 PSYCHIATRY
Manuel Gardea-Resendez, Scott Breitinger, Alex Walker, Laura Harper, Ashley Xiong, Cynthia Stoppel, Rama M Volety, Jeyakumar Raman, Jin Soo Byun, Carsten Langholm, Fernando S Goes, Peter P Zandi, John Torous, Mark A Frye
{"title":"Digital Technologies Tracking Active and Passive Data Collection in Depressive Disorders: Lessons Learned From a Case Series.","authors":"Manuel Gardea-Resendez, Scott Breitinger, Alex Walker, Laura Harper, Ashley Xiong, Cynthia Stoppel, Rama M Volety, Jeyakumar Raman, Jin Soo Byun, Carsten Langholm, Fernando S Goes, Peter P Zandi, John Torous, Mark A Frye","doi":"10.1097/PRA.0000000000000820","DOIUrl":null,"url":null,"abstract":"<p><p>In this case series, we present several examples from participants (2 patients and 1 healthy control) of a 12-week pilot feasibility study to create a digital phenotype of depression (unipolar or bipolar) through active and passive data collection from a smartphone and a wearable device combined with routine clinical care for mood disorders. The selected cases represent real clinical examples that highlight the intrinsic challenges that should be expected when conducting similar studies, including appropriate health data privacy protection, clinical standardization, and interindividual differences in levels of engagement and acceptability of active and passive data collection (ie, self-reported, behavioral, cognitive, and physiological data), particularly with patient-generated data in mobile apps, digital proficiency habituation, and consistent use of wearable devices. In the context of the rapidly growing use of digital technologies in psychiatry, anticipating challenges for the integration of personal mobile devices and smartphone mental health apps as aides to track specific aspects of depressive disorders is critical for a clinically meaningful digital transformation of mood disorders care.</p>","PeriodicalId":16909,"journal":{"name":"Journal of Psychiatric Practice","volume":"30 6","pages":"434-439"},"PeriodicalIF":1.3000,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Psychiatric Practice","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1097/PRA.0000000000000820","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"PSYCHIATRY","Score":null,"Total":0}
引用次数: 0

Abstract

In this case series, we present several examples from participants (2 patients and 1 healthy control) of a 12-week pilot feasibility study to create a digital phenotype of depression (unipolar or bipolar) through active and passive data collection from a smartphone and a wearable device combined with routine clinical care for mood disorders. The selected cases represent real clinical examples that highlight the intrinsic challenges that should be expected when conducting similar studies, including appropriate health data privacy protection, clinical standardization, and interindividual differences in levels of engagement and acceptability of active and passive data collection (ie, self-reported, behavioral, cognitive, and physiological data), particularly with patient-generated data in mobile apps, digital proficiency habituation, and consistent use of wearable devices. In the context of the rapidly growing use of digital technologies in psychiatry, anticipating challenges for the integration of personal mobile devices and smartphone mental health apps as aides to track specific aspects of depressive disorders is critical for a clinically meaningful digital transformation of mood disorders care.

数字技术跟踪抑郁障碍的主动和被动数据收集:从病例系列中汲取的经验教训。
在本病例系列中,我们介绍了几个参与者(2名患者和1名健康对照者)的例子,这些参与者进行了为期12周的试点可行性研究,通过智能手机和可穿戴设备的主动和被动数据收集,结合情绪障碍的常规临床护理,创建了抑郁症(单极或双相)的数字表型。所选病例代表了真实的临床案例,突出了在开展类似研究时应该预期的内在挑战,包括适当的健康数据隐私保护、临床标准化、主动和被动数据收集(即自我报告的、行为的、认知的和生理的数据)的参与程度和可接受性的个体间差异,特别是在移动应用程序中患者生成的数据、数字熟练习惯、以及持续使用可穿戴设备。在精神病学中数字技术使用迅速增长的背景下,预测个人移动设备和智能手机心理健康应用程序集成的挑战,作为跟踪抑郁症特定方面的助手,对于情绪障碍护理的临床有意义的数字化转型至关重要。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
2.30
自引率
10.50%
发文量
159
审稿时长
>12 weeks
期刊介绍: Journal of Psychiatric Practice® seizes the day with its emphasis on the three Rs — readability, reliability, and relevance. Featuring an eye-catching style, the journal combines clinically applicable reviews, case studies, and articles on treatment advances with practical and informative tips for treating patients. Mental health professionals will want access to this review journal — for sharpening their clinical skills, discovering the best in treatment, and navigating this rapidly changing field. Journal of Psychiatric Practice combines clinically applicable reviews, case studies, and articles on treatment advances with informative "how to" tips for surviving in a managed care environment.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信