Flavopiridol restores granulopoiesis in experimental models of severe congenital neutropenia.

IF 12.1 1区 医学 Q1 BIOTECHNOLOGY & APPLIED MICROBIOLOGY
Masoud Nasri, Benjamin Dannenmann, Larissa Doll, Betül Findik, Franka Bernhard, Sergey Kandabarau, Maksim Klimiankou, Meinrad Gawaz, Claudia Lengerke, Cornelia Zeidler, Karl Welte, Julia Skokowa
{"title":"Flavopiridol restores granulopoiesis in experimental models of severe congenital neutropenia.","authors":"Masoud Nasri, Benjamin Dannenmann, Larissa Doll, Betül Findik, Franka Bernhard, Sergey Kandabarau, Maksim Klimiankou, Meinrad Gawaz, Claudia Lengerke, Cornelia Zeidler, Karl Welte, Julia Skokowa","doi":"10.1016/j.ymthe.2024.10.031","DOIUrl":null,"url":null,"abstract":"<p><p>Severe congenital neutropenia (CN) patients require life-long treatment with recombinant human granulocyte colony-stimulating factor (rhG-CSF), but some show no response. We sought to establish a therapy for CN that targets signaling pathways causing maturation arrest of granulocytic progenitors. We developed an isogenic induced pluripotent stem cell (iPSC) in vitro model of CN associated with ELANE mutations (ELANE-CN) and performed an in silico drug repurposing analysis of the transcriptomics of iPSC-generated hematopoietic stem and progenitor cells. We identified flavopiridol, a Food and Drug Administration (FDA)-approved pan-cyclin-dependent kinase inhibitor, as a potential therapeutic. Treatment with low-dose flavopiridol rescued defective granulopoiesis in primary CD34<sup>+</sup> cells of CN patients with different inherited gene mutations in vitro and in two zebrafish CN models in vivo without any toxic effects and leading to functional granulocytes. Flavopiridol also restored granulopoiesis caused by diminished CEBPA expression, a known defective signaling molecule in CN. Thus, we described for the first time a potential therapy for CN with flavopiridol that could be potentially used to treat patients with different types of neutropenia.</p>","PeriodicalId":19020,"journal":{"name":"Molecular Therapy","volume":" ","pages":""},"PeriodicalIF":12.1000,"publicationDate":"2024-11-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Molecular Therapy","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1016/j.ymthe.2024.10.031","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Severe congenital neutropenia (CN) patients require life-long treatment with recombinant human granulocyte colony-stimulating factor (rhG-CSF), but some show no response. We sought to establish a therapy for CN that targets signaling pathways causing maturation arrest of granulocytic progenitors. We developed an isogenic induced pluripotent stem cell (iPSC) in vitro model of CN associated with ELANE mutations (ELANE-CN) and performed an in silico drug repurposing analysis of the transcriptomics of iPSC-generated hematopoietic stem and progenitor cells. We identified flavopiridol, a Food and Drug Administration (FDA)-approved pan-cyclin-dependent kinase inhibitor, as a potential therapeutic. Treatment with low-dose flavopiridol rescued defective granulopoiesis in primary CD34+ cells of CN patients with different inherited gene mutations in vitro and in two zebrafish CN models in vivo without any toxic effects and leading to functional granulocytes. Flavopiridol also restored granulopoiesis caused by diminished CEBPA expression, a known defective signaling molecule in CN. Thus, we described for the first time a potential therapy for CN with flavopiridol that could be potentially used to treat patients with different types of neutropenia.

求助全文
约1分钟内获得全文 求助全文
来源期刊
Molecular Therapy
Molecular Therapy 医学-生物工程与应用微生物
CiteScore
19.20
自引率
3.20%
发文量
357
审稿时长
3 months
期刊介绍: Molecular Therapy is the leading journal for research in gene transfer, vector development, stem cell manipulation, and therapeutic interventions. It covers a broad spectrum of topics including genetic and acquired disease correction, vaccine development, pre-clinical validation, safety/efficacy studies, and clinical trials. With a focus on advancing genetics, medicine, and biotechnology, Molecular Therapy publishes peer-reviewed research, reviews, and commentaries to showcase the latest advancements in the field. With an impressive impact factor of 12.4 in 2022, it continues to attract top-tier contributions.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信