Adam I Pelah, Monika Najdek, Marek Czosnyka, Agnieszka Uryga
{"title":"Relationship between the amplitudes of cerebral blood flow velocity and intracranial pressure using linear and non-linear approach.","authors":"Adam I Pelah, Monika Najdek, Marek Czosnyka, Agnieszka Uryga","doi":"10.1007/s10877-024-01243-1","DOIUrl":null,"url":null,"abstract":"<p><p>Intracranial pressure (ICP), cerebral blood flow and volume are affected by craniospinal elasticity and cerebrospinal fluid dynamics, interacting in complex, nonlinear ways. Traumatic brain injury (TBI) may significantly alter this relationship. This retrospective study investigated the relationship between the vascular and parenchymal intracranial compartments by analysing two amplitudes: cerebral blood flow velocity (AmpCBFV) and ICP (AMP) during hypocapnia manoeuvre in TBI patients. Twenty-nine TBI patients hospitalised at Addenbrooke's Hospital, whose ICP and CBFV were monitored during mild hypocapnia, were included. A linear metric of the relationship was defined as a moving-window correlation (R) between AmpCBFV and AMP, named RAMP. Nonlinear metrics were based on the Joint Symbolical Analysis (JSA) algorithm, which transforms AmpCBFV and AMP into sequences of symbols ('words') using a binary scheme with word lengths of three. The mean AmpCBFV and AMP were not significantly correlated at baseline (r = - 0.10) or during hypocapnia (r = - 0.19). However, the RAMP index was significantly higher at baseline (0.64 ± 0.04) compared to hypocapnia (0.57 ± 0.04, p = 0.035). The relative frequency of symmetrical word types (JSA<sub>sym</sub>) describing the AmpCBFV-AMP interaction decreased during hypocapnia (0.35 ± 0.30) compared to baseline (0.44 ± 0.030; p = 0.004). Our results indicate that while the grouped-averaged AmpCBFV and AMP were not significantly correlated, either at baseline or during hypocapnia, significant changes were observed when using RAMP and JSA indices. Further validation of these new parameters, which reflect the association between the vascular and parenchymal intracranial compartments, is needed in a larger cohort.</p>","PeriodicalId":15513,"journal":{"name":"Journal of Clinical Monitoring and Computing","volume":" ","pages":""},"PeriodicalIF":2.0000,"publicationDate":"2024-12-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Clinical Monitoring and Computing","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1007/s10877-024-01243-1","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ANESTHESIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Intracranial pressure (ICP), cerebral blood flow and volume are affected by craniospinal elasticity and cerebrospinal fluid dynamics, interacting in complex, nonlinear ways. Traumatic brain injury (TBI) may significantly alter this relationship. This retrospective study investigated the relationship between the vascular and parenchymal intracranial compartments by analysing two amplitudes: cerebral blood flow velocity (AmpCBFV) and ICP (AMP) during hypocapnia manoeuvre in TBI patients. Twenty-nine TBI patients hospitalised at Addenbrooke's Hospital, whose ICP and CBFV were monitored during mild hypocapnia, were included. A linear metric of the relationship was defined as a moving-window correlation (R) between AmpCBFV and AMP, named RAMP. Nonlinear metrics were based on the Joint Symbolical Analysis (JSA) algorithm, which transforms AmpCBFV and AMP into sequences of symbols ('words') using a binary scheme with word lengths of three. The mean AmpCBFV and AMP were not significantly correlated at baseline (r = - 0.10) or during hypocapnia (r = - 0.19). However, the RAMP index was significantly higher at baseline (0.64 ± 0.04) compared to hypocapnia (0.57 ± 0.04, p = 0.035). The relative frequency of symmetrical word types (JSAsym) describing the AmpCBFV-AMP interaction decreased during hypocapnia (0.35 ± 0.30) compared to baseline (0.44 ± 0.030; p = 0.004). Our results indicate that while the grouped-averaged AmpCBFV and AMP were not significantly correlated, either at baseline or during hypocapnia, significant changes were observed when using RAMP and JSA indices. Further validation of these new parameters, which reflect the association between the vascular and parenchymal intracranial compartments, is needed in a larger cohort.
期刊介绍:
The Journal of Clinical Monitoring and Computing is a clinical journal publishing papers related to technology in the fields of anaesthesia, intensive care medicine, emergency medicine, and peri-operative medicine.
The journal has links with numerous specialist societies, including editorial board representatives from the European Society for Computing and Technology in Anaesthesia and Intensive Care (ESCTAIC), the Society for Technology in Anesthesia (STA), the Society for Complex Acute Illness (SCAI) and the NAVAt (NAVigating towards your Anaestheisa Targets) group.
The journal publishes original papers, narrative and systematic reviews, technological notes, letters to the editor, editorial or commentary papers, and policy statements or guidelines from national or international societies. The journal encourages debate on published papers and technology, including letters commenting on previous publications or technological concerns. The journal occasionally publishes special issues with technological or clinical themes, or reports and abstracts from scientificmeetings. Special issues proposals should be sent to the Editor-in-Chief. Specific details of types of papers, and the clinical and technological content of papers considered within scope can be found in instructions for authors.