Nisrine Bissar, Rayan Kassir, Ali Salami, Said El Shamieh
{"title":"Association of immunity-related gene SNPs with Alzheimer's disease.","authors":"Nisrine Bissar, Rayan Kassir, Ali Salami, Said El Shamieh","doi":"10.3389/ebm.2024.10303","DOIUrl":null,"url":null,"abstract":"<p><p>Alzheimer's disease (AD) is a prevalent neurodegenerative disorder characterized by progressive cognitive decline. Genetic factors have been implicated in disease susceptibility as its etiology remains multifactorial. The <i>CD33</i> and the <i>HLA-DRB1</i> genes, involved in immune responses, have emerged as potential candidates influencing AD risk. In this study, 644 Lebanese individuals, including 127 AD patients and 250 controls, were genotyped, by KASP assay, for six SNPs selected from the largest GWAS study in 2021. Logistic regression analysis assessed the association between SNP genotypes and AD risk, adjusting for potential confounders. Among the six SNPs analyzed, rs1846190G>A in <i>HLA-DRB1</i> and rs1354106T>G in <i>CD33</i> showed significant associations with AD risk in the Lebanese population (<i>p</i> < 0.05). Carriers of the AG and AA genotypes of rs1846190 in <i>HLA-DRB1</i> exhibited a protective effect against AD (AG: OR = 0.042, p = 0.026; AA: OR = 0.052, p = 0.031). The GT genotype of rs1354106T>G in <i>CD33</i> was also associated with reduced risk (OR = 0.173, p = 0.005). Following Bonferroni correction, a significant correlation of rs1354106T > G with AD risk was established. Our results might highlight the complex interplay between genetic and immunological factors contributing to the development of the disease.</p>","PeriodicalId":12163,"journal":{"name":"Experimental Biology and Medicine","volume":"249 ","pages":"10303"},"PeriodicalIF":2.8000,"publicationDate":"2024-11-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11620869/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Experimental Biology and Medicine","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.3389/ebm.2024.10303","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/1/1 0:00:00","PubModel":"eCollection","JCR":"Q2","JCRName":"MEDICINE, RESEARCH & EXPERIMENTAL","Score":null,"Total":0}
引用次数: 0
Abstract
Alzheimer's disease (AD) is a prevalent neurodegenerative disorder characterized by progressive cognitive decline. Genetic factors have been implicated in disease susceptibility as its etiology remains multifactorial. The CD33 and the HLA-DRB1 genes, involved in immune responses, have emerged as potential candidates influencing AD risk. In this study, 644 Lebanese individuals, including 127 AD patients and 250 controls, were genotyped, by KASP assay, for six SNPs selected from the largest GWAS study in 2021. Logistic regression analysis assessed the association between SNP genotypes and AD risk, adjusting for potential confounders. Among the six SNPs analyzed, rs1846190G>A in HLA-DRB1 and rs1354106T>G in CD33 showed significant associations with AD risk in the Lebanese population (p < 0.05). Carriers of the AG and AA genotypes of rs1846190 in HLA-DRB1 exhibited a protective effect against AD (AG: OR = 0.042, p = 0.026; AA: OR = 0.052, p = 0.031). The GT genotype of rs1354106T>G in CD33 was also associated with reduced risk (OR = 0.173, p = 0.005). Following Bonferroni correction, a significant correlation of rs1354106T > G with AD risk was established. Our results might highlight the complex interplay between genetic and immunological factors contributing to the development of the disease.
期刊介绍:
Experimental Biology and Medicine (EBM) is a global, peer-reviewed journal dedicated to the publication of multidisciplinary and interdisciplinary research in the biomedical sciences. EBM provides both research and review articles as well as meeting symposia and brief communications. Articles in EBM represent cutting edge research at the overlapping junctions of the biological, physical and engineering sciences that impact upon the health and welfare of the world''s population.
Topics covered in EBM include: Anatomy/Pathology; Biochemistry and Molecular Biology; Bioimaging; Biomedical Engineering; Bionanoscience; Cell and Developmental Biology; Endocrinology and Nutrition; Environmental Health/Biomarkers/Precision Medicine; Genomics, Proteomics, and Bioinformatics; Immunology/Microbiology/Virology; Mechanisms of Aging; Neuroscience; Pharmacology and Toxicology; Physiology; Stem Cell Biology; Structural Biology; Systems Biology and Microphysiological Systems; and Translational Research.