{"title":"Enhanced degradation activity of PET plastics by fusion protein of anchor peptide LCI and Thermobifida fusca cutinase.","authors":"Yidi Liu, Zhanzhi Liu, Xuehong Guo, Ke Tong, Yueheng Niu, Zhiyu Shen, Hanzhi Weng, Fengshan Zhang, Jing Wu","doi":"10.1016/j.enzmictec.2024.110562","DOIUrl":null,"url":null,"abstract":"<p><p>The substantial accumulation of polyethylene terephthalate (PET) plastic waste in the environment has exacerbated the issue of plastic pollution. The biodegradation of PET plastics using biological enzymes has garnered considerable attention due to its efficiency and environmentally friendly nature. Nevertheless, the low binding affinity of PET plastics presents a significant limitation to the application of biocatalysts in their degradation. This study endeavors to engineer a fusion protein comprising the anchor peptide LCI, derived from Bacillus subtilis A014, and a thermally stabilized variant of Thermobifida fusca cutinase, D204C/E253C (Tfuc2), with the objective of augmenting its polyethylene terephthalate (PET) degradation efficacy. The findings demonstrate that LCI exhibits a high binding affinity for PET, and the hydrolytic efficiency of the LCI-containing fusion protein is enhanced by a factor of 1.8-34.5 compared to the free Tfuc2 enzyme. The enzymatic characteristics and molecular dynamics simulation outcomes indicate that the improved hydrolytic efficiency of PET may originate from the flexible oscillatory behavior of LCI, which exhibits a high binding affinity for PET. This study presents a novel methodology for the enzymatic degradation of PET plastic waste.</p>","PeriodicalId":11770,"journal":{"name":"Enzyme and Microbial Technology","volume":"184 ","pages":"110562"},"PeriodicalIF":3.4000,"publicationDate":"2024-12-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Enzyme and Microbial Technology","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1016/j.enzmictec.2024.110562","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
The substantial accumulation of polyethylene terephthalate (PET) plastic waste in the environment has exacerbated the issue of plastic pollution. The biodegradation of PET plastics using biological enzymes has garnered considerable attention due to its efficiency and environmentally friendly nature. Nevertheless, the low binding affinity of PET plastics presents a significant limitation to the application of biocatalysts in their degradation. This study endeavors to engineer a fusion protein comprising the anchor peptide LCI, derived from Bacillus subtilis A014, and a thermally stabilized variant of Thermobifida fusca cutinase, D204C/E253C (Tfuc2), with the objective of augmenting its polyethylene terephthalate (PET) degradation efficacy. The findings demonstrate that LCI exhibits a high binding affinity for PET, and the hydrolytic efficiency of the LCI-containing fusion protein is enhanced by a factor of 1.8-34.5 compared to the free Tfuc2 enzyme. The enzymatic characteristics and molecular dynamics simulation outcomes indicate that the improved hydrolytic efficiency of PET may originate from the flexible oscillatory behavior of LCI, which exhibits a high binding affinity for PET. This study presents a novel methodology for the enzymatic degradation of PET plastic waste.
期刊介绍:
Enzyme and Microbial Technology is an international, peer-reviewed journal publishing original research and reviews, of biotechnological significance and novelty, on basic and applied aspects of the science and technology of processes involving the use of enzymes, micro-organisms, animal cells and plant cells.
We especially encourage submissions on:
Biocatalysis and the use of Directed Evolution in Synthetic Biology and Biotechnology
Biotechnological Production of New Bioactive Molecules, Biomaterials, Biopharmaceuticals, and Biofuels
New Imaging Techniques and Biosensors, especially as applicable to Healthcare and Systems Biology
New Biotechnological Approaches in Genomics, Proteomics and Metabolomics
Metabolic Engineering, Biomolecular Engineering and Nanobiotechnology
Manuscripts which report isolation, purification, immobilization or utilization of organisms or enzymes which are already well-described in the literature are not suitable for publication in EMT, unless their primary purpose is to report significant new findings or approaches which are of broad biotechnological importance. Similarly, manuscripts which report optimization studies on well-established processes are inappropriate. EMT does not accept papers dealing with mathematical modeling unless they report significant, new experimental data.