A minimal physiologically-based pharmacokinetic modeling platform to predict intratumor exposure and receptor occupancy of an anti-LAG-3 monoclonal antibody.

IF 3.1 3区 医学 Q2 PHARMACOLOGY & PHARMACY
Robin Michelet, Klas Petersson, Marc C Huisman, C Willemien Menke-van der Houven van Oordt, Iris H C Miedema, Andrea Thiele, Ghazal Montaseri, Alejandro Pérez-Pitarch, David Busse
{"title":"A minimal physiologically-based pharmacokinetic modeling platform to predict intratumor exposure and receptor occupancy of an anti-LAG-3 monoclonal antibody.","authors":"Robin Michelet, Klas Petersson, Marc C Huisman, C Willemien Menke-van der Houven van Oordt, Iris H C Miedema, Andrea Thiele, Ghazal Montaseri, Alejandro Pérez-Pitarch, David Busse","doi":"10.1002/psp4.13285","DOIUrl":null,"url":null,"abstract":"<p><p>In oncology drug development, measuring drug concentrations at the tumor site and at the targeted receptor remains an ongoing challenge. Positron emission tomography (PET)-imaging is a promising noninvasive method to quantify intratumor exposure of a radiolabeled drug (biodistribution data) and target saturation by treatment doses in vivo. Here, we present the development and application of a minimal physiologically-based pharmacokinetic (mPBPK) modeling approach to integrate biodistribution data in a quantitative platform to characterize and predict intratumor exposure and receptor occupancy (RO) of BI 754111, an IgG-based anti-lymphocyte-activation gene 3 (LAG-3) monoclonal antibody (mAb). Specifically, calibration and qualification of the predictions were performed using <sup>89</sup>Zr-labeled BI 754111 biodistribution data, that is, PET-derived intratumor drug concentration data, tumor-to-plasma ratios, and data from Patlak analyses. The model predictions were refined iteratively by the inclusion of additional biological processes into the model structure and the use of sensitivity analyses to assess the impact of model assumptions and parameter uncertainty on the predictions and model robustness. The developed mPBPK model allowed an adequate description of observed tumor radioactivity concentrations and tumor-to-plasma ratios leading to subsequent adequate prediction of LAG-3 RO at different dose levels. In the future, the developed model could be used as a platform for the prediction and analysis of biodistribution data for other mAbs and may ultimately support dose optimization by identifying dosages resulting in saturated RO.</p>","PeriodicalId":10774,"journal":{"name":"CPT: Pharmacometrics & Systems Pharmacology","volume":" ","pages":""},"PeriodicalIF":3.1000,"publicationDate":"2024-12-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"CPT: Pharmacometrics & Systems Pharmacology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1002/psp4.13285","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHARMACOLOGY & PHARMACY","Score":null,"Total":0}
引用次数: 0

Abstract

In oncology drug development, measuring drug concentrations at the tumor site and at the targeted receptor remains an ongoing challenge. Positron emission tomography (PET)-imaging is a promising noninvasive method to quantify intratumor exposure of a radiolabeled drug (biodistribution data) and target saturation by treatment doses in vivo. Here, we present the development and application of a minimal physiologically-based pharmacokinetic (mPBPK) modeling approach to integrate biodistribution data in a quantitative platform to characterize and predict intratumor exposure and receptor occupancy (RO) of BI 754111, an IgG-based anti-lymphocyte-activation gene 3 (LAG-3) monoclonal antibody (mAb). Specifically, calibration and qualification of the predictions were performed using 89Zr-labeled BI 754111 biodistribution data, that is, PET-derived intratumor drug concentration data, tumor-to-plasma ratios, and data from Patlak analyses. The model predictions were refined iteratively by the inclusion of additional biological processes into the model structure and the use of sensitivity analyses to assess the impact of model assumptions and parameter uncertainty on the predictions and model robustness. The developed mPBPK model allowed an adequate description of observed tumor radioactivity concentrations and tumor-to-plasma ratios leading to subsequent adequate prediction of LAG-3 RO at different dose levels. In the future, the developed model could be used as a platform for the prediction and analysis of biodistribution data for other mAbs and may ultimately support dose optimization by identifying dosages resulting in saturated RO.

求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
5.00
自引率
11.40%
发文量
146
审稿时长
8 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信